首页> 外文期刊>Computers & Graphics >Hierarchical block-based incomplete human mocap data recovery using adaptive nonnegative matrix factorization
【24h】

Hierarchical block-based incomplete human mocap data recovery using adaptive nonnegative matrix factorization

机译:使用自适应非负矩阵分解的分层基于块的不完整人类运动数据恢复

获取原文
获取原文并翻译 | 示例

摘要

Human motion capture (mocap) data has been widely utilized for realistic character animation, and the missing marker problem caused by occlusions or a marker falling off often results in an incomplete collection. In this paper, we present a hierarchical block-based incomplete human mocap data recovery approach by using adaptive nonnegative matrix factorization, which mainly consists of two layers: interior layer and exterior layer. In the interior layer, we first decompose the underling human skeleton model into five blocks and represent the whole human mocap data in terms of the block-based sub-chain motion clips, in which the moving trajectories of each sub-chain motion clip always share the approximately low-rank property. Then, an adaptive nonnegative matrix factorization method aiming at exploiting the low-rank structure and the nonnegativity constraint is presented to restore each incomplete sub-chain motion clip individually. In the exterior layer, we integrate the recovered sub-chain motion clips and further utilize the known entries within the raw mocap data to refine the corresponding restored data of same positions, whereby the whole incomplete human mocap data can be well recovered. Without any user assistance and the training priors, the experimental results have shown the reliable recovering performance in comparison with the state-of-the-art competing approaches. (C) 2015 Elsevier Ltd. All rights reserved.
机译:人体动作捕捉(mocap)数据已被广泛用于逼真的角色动画,并且由于遮挡或标记脱落而导致的标记丢失问题经常导致收集不完整。在本文中,我们通过使用自适应非负矩阵分解技术提出了一种基于分层块的不完整人类运动数据恢复方法,该方法主要由两层组成:内部层和外部层。在内部层中,我们首先将基础的人体骨骼模型分解为五个块,并根据基于块的子链运动片段表示整个人类运动数据,其中每个子链运动片段的运动轨迹始终共享等级较低的财产。然后,提出了一种针对低阶结构和非负约束的自适应非负矩阵分解方法,以分别恢复每个不完整的子链运动片段。在外层,我们整合了恢复的子链运动剪辑,并进一步利用原始Mocap数据中的已知条目来细化相同位置的相应恢复数据,从而可以很好地恢复整个不完整的人类Mocap数据。在没有任何用户帮助和培训先验的情况下,实验结果表明,与最新的竞争方法相比,该方法具有可靠的恢复性能。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号