首页> 外文期刊>Computers & Graphics >Robust enhancement of depth images from depth sensors
【24h】

Robust enhancement of depth images from depth sensors

机译:深度传感器深度图像的强大增强

获取原文
获取原文并翻译 | 示例

摘要

In recent years, depth cameras (such as Microsoft Kinect and ToF cameras) have gained much popularity in computer graphics, visual computing and virtual reality communities due to their low price and easy availability. While depth cameras (e.g. Microsoft Kinect) provide RGB images along with real-time depth information at high frame rate, the depth images often suffer from several artifacts due to inaccurate depth measurement. These artifacts highly degrade the visual quality of the depth frames. Most of these artifacts originate from two main sources-the missing/invali depth values and fluctuating valid depth values on the generated contents. In this paper, we propose a new depth image enhancement method, for the contents of depth cameras, which addresses these two main sources of artifacts. We introduce a robust 1D Least Median of Squares (1D LMedS) approach to estimate the depth values of those pixels which have missing/invalid depth values. We use a sequence of frames to look for invalid depth values (considered as outliers), and finally, replace those values with stable and more plausible depth values. By doing so, our approach improves the unstable nature of valid depth values in captured scenes that is perceived as flickering. We use self-recorded and reference datasets along with reference methods to evaluate the performance of our proposed 1D LMedS. Experimental results show improvements both for static and moving parts of a scene. (C) 2017 Elsevier Ltd. All rights reserved.
机译:近年来,深度相机(例如Microsoft Kinect和ToF相机)因其价格低廉且易于获得而在计算机图形,视觉计算和虚拟现实社区中获得了广泛的普及。虽然深度相机(例如Microsoft Kinect)以高帧频提供RGB图像以及实时深度信息,但是由于深度测量不准确,深度图像经常会遭受一些伪影。这些伪像会严重降低深度框的视觉质量。这些伪影大部分来自两个主要来源-缺失/无形深度值以及所生成内容的有效深度值波动。在本文中,我们针对深度相机的内容提出了一种新的深度图像增强方法,该方法解决了这两种主要的伪影来源。我们引入了鲁棒的一维最小二乘平方(1D LMedS)方法来估计那些缺少/无效深度值的像素的深度值。我们使用一系列帧查找无效的深度值(被视为离群值),最后,用稳定且更合理的深度值替换这些值。通过这样做,我们的方法改善了被捕获的场景中有效深度值的不稳定特性,这种不稳定特性被认为是闪烁的。我们使用自记录和参考数据集以及参考方法来评估我们提出的一维LMedS的性能。实验结果表明,场景的静态和动态部分都得到了改善。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号