首页> 外文期刊>Computers & Graphics >Surface reconstruction of incomplete datasets: A novel Poisson surface approach based on CSRBF
【24h】

Surface reconstruction of incomplete datasets: A novel Poisson surface approach based on CSRBF

机译:不完整数据集的曲面重建:基于CSRBF的新型Poisson曲面方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel surface reconstruction method based on unorganized point clouds, which focuses on offering complete and closed mesh models of partially sampled object surfaces. To accomplish this task, our approach builds upon a knowna priorimodel that coarsely describes the scanned object to guide the modeling of the shape based on heavily occluded point clouds. In the region of space visible to the scanner, we retrieve the surface by following the resolution of a Poisson problem: the surface is modeled as the zero level-set of an implicit function whose gradient is the closest to the vector field induced by the 3D sample normals. In the occluded region of space, we consider thea priorimodel as a sufficiently accurate descriptor of the shape. Both models, which are expressed in the same basis of compactly supported radial functions to ensure computation and memory efficiency, are then blended to obtain a closed model of the scanned object. Our method is finally tested on traditional testing datasets to assess its accuracy and on simulated terrestrial LiDAR scanning (TLS) point clouds of trees to assess its ability to handle complex shapes with occlusions.
机译:本文介绍了一种基于无组织点云的新型曲面重构方法,该方法着重于提供部分采样的物体表面的完整和闭合网格模型。为了完成此任务,我们的方法基于已知的先验模型,该模型粗略地描述了扫描的对象,以基于严重遮挡的点云来指导形状的建模。在扫描仪可见的空间区域中,我们通过遵循泊松问题的解决方案来检索表面:将表面建模为隐函数的零水平集,该隐函数的梯度最接近3D诱导的矢量场样本法线。在封闭的空间区域中,我们将先验模型视为形状的足够准确的描述子。然后,将两个模型(在紧凑支持的径向函数的相同基础上表示以确保计算和存储效率表示)进行混合,以获得扫描对象的封闭模型。最终,我们的方法在传统的测试数据集上进行了测试,以评估其准确性,并在树木的陆地模拟LiDAR扫描(TLS)点云上进行了评估,以评估其处理具有遮挡的复杂形状的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号