首页> 外文期刊>Computers & Graphics >Object tracking using Langevin Monte Carlo particle filter and locality sensitive histogram based likelihood model
【24h】

Object tracking using Langevin Monte Carlo particle filter and locality sensitive histogram based likelihood model

机译:使用Langevin Monte Carlo粒子滤波和基于局部敏感直方图的似然模型进行目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

HighlightsWe propose to use the Langevin Monte Carlo Sampling method to sample from the posterior distribution.We adopt the locality sensitive histogram (LSH) based likelihood model for template based object representation. Each candidate is evaluated by computing the distance between its LSH and the templates LSH. The template LSH is updated online.The LMC and LSH based likelihood model is incorporated within the particle filter tracking framework to build a robust tracker. We demonstrate the performance of the proposed method based on comprehensive analysis of the experimental results.Graphical abstractDisplay OmittedAbstractVisual object tracking is a challenging research task in computer vision community which has been intensively studied by researchers in the past decades. Among all of the existing methods, particle filter based methods have gained special attention due to its ability to handle highly nonlinearon-Gaussian multi-modality models. This paper proposes a robust particle filter based tracking method based on the Langevin Monte Carlo sampling. The Langevin Monte Carlo sampling method leverages the gradient of the posterior probability distribution to draw new particles. Meanwhile, an auxiliary momentum variable is introduced to ensure that the proposed sample cannot be trapped in local mode of the posterior distribution. As for the likelihood model, we introduce the locality sensitive histogram based model to handle the severe appearance variations induced by illumination change, partial occlusion or other factors. We compare the proposed method with several popular tracking methods from qualitative and quantitative perspectives. The experimental results show that the proposed method outperforms its counterparts.
机译: 突出显示 我们建议使用Langevin蒙特卡洛采样方法从后验分布中进行采样。 我们为模板采用了基于局部敏感直方图(LSH)的似然模型基于对象的表示形式。通过计算每个候选者的LSH和模板LSH之间的距离来评估每个候选者。模板LSH在线更新。 基于LMC和LSH的似然模型被并入粒子过滤器跟踪框架中,以构建健壮的跟踪器。在对实验结果进行综合分析的基础上,我们证明了该方法的性能。 图形摘要 省略显示 < ce:section-title id =“ sectt0003”>摘要 视觉对象跟踪是计算机视觉界一项具有挑战性的研究任务,在过去的几十年中,研究人员对其进行了深入研究。在所有现有方法中,基于粒子滤波的方法由于能够处理高度非线性/非高斯的多模态模型而受到了特别的关注。本文提出了一种基于Langevin Monte Carlo采样的鲁棒粒子滤波跟踪方法。 Langevin蒙特卡洛采样方法利用后验概率分布的梯度来绘制新粒子。同时,引入了一个辅助动量变量,以确保所提出的样本不会以后验分布的局部模式被捕获。至于似然模型,我们引入了基于局部敏感直方图的模型来处理由光照变化,部分遮挡或其他因素引起的严重外观变化。从定性和定量的角度,我们将提出的方法与几种流行的跟踪方法进行了比较。实验结果表明,该方法优于同类方法。

著录项

  • 来源
    《Computers & Graphics》 |2018年第2期|214-223|共10页
  • 作者单位

    School of Information and Communication Engineering, Dalian Minzu University,School of Information and Communication Engineering, Dalian University of Technology;

    School of Information and Communication Engineering, Dalian University of Technology;

    School of Information and Communication Engineering, Dalian Minzu University;

    Department of Software Engineering, Dalian Neusoft University of Information;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object tracking; Particle filter; Langevin Monte Carlo; Locality sensitive histogram;

    机译:目标跟踪粒子滤波Langevin Monte Carlo局部敏感直方图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号