首页> 外文期刊>Computers & geosciences >Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks
【24h】

Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks

机译:卷积神经网络的1D频率和时域电磁数据的反演

获取原文
获取原文并翻译 | 示例

摘要

Inversion of electromagnetic data finds applications in many areas of geophysics. The inverse problem is commonly solved with either deterministic optimization methods (such as the nonlinear conjugate gradient or Gauss-Newton) which are prone to getting trapped in a local minimum, or probabilistic methods which are very computationally demanding. A recently emerging alternative is to employ deep neural networks for predicting subsurface model properties from measured data. This approach is entirely data-driven, does not employ traditional misfit optimization methods and provides a guess to the model instantaneously. In this study, we examine the feasibility of using deep convolutional neural networks for the inversion of marine frequency domain controlled-source electromagnetic (CSEM) data as well as onshore time-domain electromagnetic (TEM) data. Our approach yields accurate results both on synthetic and real data and provides them instantaneously. Using several networks and combining their outputs from various training epochs can also provide insights into the uncertainty distribution, which are found to be higher in the regions where resistivity anomalies are present. The proposed method opens up possibilities to estimate the subsurface resistivity distribution in exploration scenarios in real time.
机译:电磁数据反演发现在地球物理学的许多领域的应用。逆问题通常与任一确定性优化方法(如非线性共轭梯度或高斯 - 牛顿),它们是容易得到被困在一个局部最小值,或它们非常计算要求概率方法来解决。一种最近出现的另一种方法是采用深神经网络用于从测量的数据来预测地下模型的特性。这种做法完全是数据驱动的,没有采用传统的失配的优化方法,并提供了一个猜测到模型瞬间。在这项研究中,我们检查使用深卷积神经网络对海洋频域受控源电磁(CSEM)数据的反转以及陆上时域电磁(TEM)数据的可行性。我们的做法产生了既对合成和真实数据的准确结果,并立即为他们提供。使用若干网络和它们的输出由不同的训练时期组合还可以提供深入的不确定性分布,这被发现是在电阻率异常的存在的区域更高。该方法开辟了可能性,以实时估计在探索场景的地下电阻率分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号