首页> 外文期刊>Computers & geosciences >A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation
【24h】

A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation

机译:结合深度学习的新型元胞自动机模型用于动态时空土地利用变化模拟

获取原文
获取原文并翻译 | 示例

摘要

Land use change (LUC) exhibits obvious spatio-temporal dependency. Previous cellular automata (CA)-based methods usually treated the LUC dynamics as Markov processes and proposed a series of CA-Markov models, which however, were intrinsically unable to capture the long-term temporal dependency. Meanwhile, such models used only numerical proportion of neighboring land use (LU) types to represent neighborhood effects of LUC, which inevitably neglected the complicated spatial heterogeneity and thus caused inaccurate simulation results. To address these problems, this paper presents a novel CA model integrated with deep learning (DL) techniques to model spatio-temporal LUC dynamics. Our DL-CA model firstly uses a convolutional neural network to capture latent spatial features for complete representation of neighborhood effects. A recurrent neural network then extracts historical information of LUC from time-series land use maps. A random forest is appended as binary change predictor to avoid the imbalanced sample problem during model training.Land use data collected from 2000 to 2014 of the Dongguan City, China were used to verify our proposed DL-CA model. The input data from 2000 to 2009 were used for model training, the 2010 data for model validation, and the data collected from 2011 to 2014 were used for model evaluation. In addition, four traditional CA models of multilayer perceptron (MLP)-CA, support vector machine (SVM)-CA, logistic regression (LR)-CA and random forest (RF)-CA were also developed for accuracy comparisons. The simulation results demonstrate that the proposed DL-CA model accurately captures long-term spatio-temporal dependency for more accurate LUC prediction results. The DL-CA model raised prediction accuracy by 9.3%-11.67% in 2011-2014 in contrast to traditional CA models.
机译:土地利用变化(LUC)表现出明显的时空依赖性。以前的基于细胞自动机(CA)的方法通常将LUC动力学视为Markov过程,并提出了一系列CA-Markov模型,但是,它们本质上无法捕获长期的时间依赖性。同时,这种模型仅用数值比例的邻近土地利用(LU)来代表LUC的邻域效应,不可避免地忽略了复杂的空间异质性,从而导致模拟结果不准确。为了解决这些问题,本文提出了一种与深度学习(DL)技术集成在一起的新型CA模型,以对时空LUC动力学进行建模。我们的DL-CA模型首先使用卷积神经网络捕获潜在的空间特征,以完整表示邻域效应。然后,循环神经网络从时序土地利用图中提取土地利用变化的历史信息。为了避免模型训练过程中样本不平衡的问题,增加了一个随机森林作为二元变化预测因子。使用2000年至2014年中国东莞市的土地利用数据来验证我们提出的DL-CA模型。 2000年至2009年的输入数据用于模型训练,2010年数据用于模型验证,2011年至2014年收集的数据用于模型评估。此外,还开发了四个传统的多层感知器(MLP)-CA,支持向量机(SVM)-CA,逻辑回归(LR)-CA和随机森林(RF)-CA的CA模型以进行准确性比较。仿真结果表明,所提出的DL-CA模型可以准确地捕获长期时空依赖性,以获得更准确的LUC预测结果。与传统的CA模型相比,DL-CA模型在2011-2014年将预测准确性提高了9.3%-11.67%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号