...
首页> 外文期刊>Computers & geosciences >A general approach for modeling the motion of rigid and deformable ellipsoids in ductile flows
【24h】

A general approach for modeling the motion of rigid and deformable ellipsoids in ductile flows

机译:建模延性流中刚性和可变形椭圆体运动的通用方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A general approach for modeling the motion of rigid or deformable objects in viscous flows is presented. It is shown that the rotation of a 3D object in a viscous fluid, regardless of the mechanical property and shape of the object, is defined by a common and simple differential equation, dQ/dt = -ΘQ., where Q is a matrix defined by the orientation of the object and Θ is the angular velocity tensor of the object. The difference between individual cases lies only in the formulation for the angular velocity. Thus the above equation, together with Jeffery's theory for the angular velocity of rigid ellipsoids, describes the motion of rigid ellipsoids in viscous flows. The same equation, together with Eshelby's theory for the angular velocity of deformable ellipsoids, describes the motion of deformable ellipsoids in viscous flows. Both problems are solved here numerically by a general approach that is much simpler conceptually and more economic computationally, compared to previous approaches that consider the problems separately and require numerical solutions to coupled differential equations about Euler angles or spherical (polar coordinate) angles. A Runge-Kutta approximation is constructed for solving the above general differential equation. Singular cases of Eshelby's equations when the object is spheroidal or spherical are handled in this paper in a much simpler way than in previous work. The computational procedure can be readily implemented in any modern mathematics application that handles matrix operations. Four MathCad Worksheets are provided for modeling the motion of a single rigid or deformable ellipsoid immersed in viscous fluids, as well as the evolution of a system of noninteracting rigid or deformable ellipsoids embedded in viscous flows.
机译:提出了一种模拟刚性或可变形物体在粘性流中运动的通用方法。结果表明,粘性流体中3D对象的旋转与对象的机械特性和形状无关,由一个常见且简单的微分方程dQ / dt =-ΘQ。定义,其中Q是定义的矩阵物体的方位角θ是物体的角速度张量。个别情况之间的区别仅在于角速度的公式。因此,以上方程式与Jeffery的关于刚性椭球体角速度的理论一起描述了刚性椭球体在粘性流中的运动。相同的方程式与Eshelby的可变形椭球体角速度理论一起描述了可变形椭球体在粘性流中的运动。与以前的方法相比,在先的方法在概念上更简单,更经济地计算,从而在数值上解决了这两个问题,而以前的方法则单独考虑了这些问题,并且需要对有关欧拉角或球面(极坐标)角的耦合微分方程进行数值求解。为解决上述一般微分方程,构造了Runge-Kutta近似。与以前的工作相比,本文以简单得多的方式处理对象为球形或球形的Eshelby方程的奇异情况。计算程序可以在处理矩阵运算的任何现代数学应用程序中轻松实现。提供了四个MathCad工作表,用于模拟浸入粘性流体中的单个刚性或可变形椭球的运动,以及嵌入粘性流中的非交互性刚性或可变形椭球系统的演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号