首页> 外文期刊>Computers & geosciences >Parallel contributing area calculation with granularity control on massive grid terrain datasets
【24h】

Parallel contributing area calculation with granularity control on massive grid terrain datasets

机译:大规模网格地形数据集上具有粒度控制的并行贡献区域计算

获取原文
获取原文并翻译 | 示例

摘要

The calculation of contributing areas from digital elevation models (DEMs) is one of the important tasks in digital terrain analysis (DTA). The computational process usually involves two steps in a real application: (1) calculating flow directions via a flow model, and (2) computing the contributing area for each grid cell in the DEM. The traditional algorithm for calculating contributing areas is coded as a sequential program executed on a single processor. With the increase of scope and resolution of DEMs, the serial algorithm has become increasingly difficult to perform and is often very time-consuming, especially for DEMs of large areas and fine scales. In recent years, parallel computing is able to meet this challenge with the development of computer technology. However, the parallel implementation with granularity control, an efficient strategy to reap the best parallel performance and to break the limitation of computing resources in processing massive grid terrain datasets, has not been found in DTA research field. This paper develops a message-passing-interface (MPI) parallel approach with granularity control to calculate contributing areas. According to the proposed parallelization strategy, the parallel D8 algorithm with granularity control is designed as well as the parallel AreaD8 algorithm. Based on the domain decomposition of DEM data, it is possible for each process to process multiple partitions decomposed under a grain size. According to an iterative procedure of reading source data, executing the operator and writing resulting data, the partitions achieve the calculation results one by one in each process. The experimental results on a multi-node cluster show that the proposed parallel algorithms with granularity control are the powerful tools to process the big dataset and the parallel D8 algorithm is insensitive to granularity, while the parallel AreaD8 algorithm has an optimal grain size to reap the best parallel performance.
机译:从数字高程模型(DEM)计算贡献区域是数字地形分析(DTA)的重要任务之一。在实际应用中,计算过程通常涉及两个步骤:(1)通过流模型计算流向,以及(2)计算DEM中每个网格单元的贡献面积。用于计算贡献区域的传统算法被编码为在单个处理器上执行的顺序程序。随着DEM范围和分辨率的增加,串行算法变得越来越难以执行,并且通常非常耗时,特别是对于大面积和小规模的DEM。近年来,随着计算机技术的发展,并行计算能够应对这一挑战。然而,在DTA研究领域尚未发现具有粒度控制的并行实现,这种并行控制是一种获得最佳并行性能并打破处理大型网格地形数据集的计算资源限制的有效策略。本文开发了一种具有粒度控制的消息传递接口(MPI)并行方法,以计算贡献区域。根据提出的并行化策略,设计了具有粒度控制的并行D8算法以及并行AreaA8算法。基于DEM数据的域分解,每个过程都可以处理根据粒度分解的多个分区。根据读取源数据,执行运算符并写入结果数据的迭代过程,分区在每个过程中一一实现计算结果。在多节点集群上的实验结果表明,所提出的带有粒度控制的并行算法是处理大型数据集的强大工具,而并行D8算法对粒度不敏感,而并行AreaD8算法则具有最佳粒度以获取最大数据量。最佳并行性能。

著录项

  • 来源
    《Computers & geosciences》 |2013年第10期|70-80|共11页
  • 作者单位

    Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China;

    Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China;

    Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China;

    Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China;

    Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China;

    Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parallel computing; Granularity control; Digital terrain analysis; Contributing area; Flow direction;

    机译:并行计算粒度控制;数字地形分析;贡献面积;流动的方向;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号