首页> 外文期刊>Computers & geosciences >Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks
【24h】

Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

机译:人工神经网络预测的前兆,用于质量平衡计算:量化火山岩中的热液蚀变

获取原文
获取原文并翻译 | 示例

摘要

This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank based correlation coefficients were calculated to compare predicted and analysed values from a least altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-IC rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.
机译:这项研究提出了一种基于人工神经网络的方法来预测水热蚀变火山岩的化学成分未改变(前体)。该方法旨在预测前体的主要成分含量(SiO2,FeOT,MgO,CaO,Na2O和K2O)。该预测基于更改过程中通常不可移动元素的比例;即Zr,TiO2,Al2O3,Y,Nb,Th和Cr作为神经网络的输入提供。多层感知器神经网络在最小变化的火山岩样本的大型数据集上进行了训练,该样本记录了范围广泛的火山岩类型,构造背景和年龄。然后将如此预测的前体用于执行质量平衡计算。计算了各种统计数据以验证对前体主要成分的预测,这表明,总体而言,这些预测是准确而准确的。例如,计算了基于等级的相关系数,以比较来自变化最小的测试数据集(尚未用于训练网络)的预测值和分析值。除Na2O(0.77)外,所有组分的系数均超过0.87,这表明对碱的预测可能效果较差。此外,除超IC岩石外,对大多数火山岩成分的预测都是有效的。所提出的方法为确定由水热蚀变改性的岩石确定合适的火山前驱体成分这一通常困难的任务提供了一种简便而快速的解决方案。它适用于大型火山岩数据库,例如对在复杂或鲜为人知的火山环境中进行的矿物勘探最有用。该方法实现为简单的C ++控制台程序。 Crown版权所有(C)2016,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号