首页> 外文期刊>Computers,environment and urban systems >Integrating spatial nonstationarity into SLEUTH for urban growth modeling: A case study in the Wuhan metropolitan area
【24h】

Integrating spatial nonstationarity into SLEUTH for urban growth modeling: A case study in the Wuhan metropolitan area

机译:将空间惰性融入城市增长型号集成到统一性:武汉大都市区的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Accurate forecasting of future urban land expansion can provide useful information for policy makers and urban planners to better plan for the impacts of future land use and land cover change (LULCC) on the ecosystem. However, most current studies do not emphasize spatial variations in the influence intensities of the various driving forces, resulting in unreliable predictions of future urban development. This study aimed to enhance the capability of the SLEUTH model, a cellular automaton model that is commonly used to measure and forecast urban growth and LULCC, by embedding an urban suitability surface from geographically weighted logistic regression (GWLR). Moreover, to examine the performance of the loosely-coupled GWLR-SLEUTH model, a layer with only water bodies excluded and a layer combining the former with an urban suitability surface from logistic regression (LR) were also used in SLEUTH in separate model calibrations. This study was applied to the largest metropolitan area in central China, the Wuhan metropolitan area (WMA). Results show that the integrated GWLR-SLEUTH model performed better than either the traditional SLEUTH model or the LR-SLEUTH model. Findings demonstrate that spatial nonstationarity existed in the drivers' impacts on the urban expansion in the study area and that terrain, transportation and socioeconomic factors were the major drivers of urban expansion in the study area. Finally, with the optimal calibrated parameter sets from the GWLR-SLEUTH model, an urban land forecast from 2017 to 2035 was conducted under three scenarios: 1) business as usual; 2) under future planning policy; and 3) ecologically sustainable growth. Findings show that future planning policy may promise a more sustainable urban development if the plan is strictly obeyed. This study recommended that spatial heterogeneity should be taken into account in the process of land change modeling and the integrated model can be applied to other areas for further validation and forecasts.
机译:准确的未来城市土地扩张预测可以为决策者和城市规划者提供有用的信息,以更好地计划未来土地利用和土地覆盖变更(LULCC)对生态系统的影响。然而,大多数目前的研究没有强调各种驱动力的影响强度的空间变化,从而导致未来城市发展的不可靠预测。本研究旨在提高统一模型的能力,该蜂窝自动机制模型通常用于测量和预测城市增长和LULCC,从地理加权逻辑回归(GWLR)嵌入城市适用性。此外,为了检查松散耦合的GWLR-绞合模型的性能,仅排除了一个具有水体的层和与逻辑回归(LR)的城市适用性表面组合的层,在单独的模型校准中也使用了从Logistic回归(LR)。本研究适用于中国中部最大的大都市区,武汉大都市区(WMA)。结果表明,集成的GWLR-leuth模型比传统的统一模型或LR-leuth模型更好。调查结果表明,司机对研究区域的城市扩张的影响存在的空间非运动,以及地形,交通和社会经济因素是研究区城市扩张的主要驱动因素。最后,利用来自GWLR-leuth模型的最佳校准参数集,2017年至2035年的城市土地预测是在三种情况下进行的:1)作为惯常的业务进行; 2)在未来的规划政策下; 3)生态上可持续增长。调查结果表明,如果计划严格遵守,未来的规划政策可能会承诺更可持续的城市发展。本研究建议在陆地变化建模过程中考虑空间异质性,并且综合模型可以应用于其他领域以进行进一步验证和预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号