首页> 外文期刊>Computers,environment and urban systems >Inferring urban air quality based on social media
【24h】

Inferring urban air quality based on social media

机译:基于社交媒体推断城市空气质量

获取原文
获取原文并翻译 | 示例

摘要

Outdoor air pollution is a serious environmental problem in many developing countries; obtaining timely and accurate information about urban air quality is a first step toward air pollution control. Many developing countries however, do not have any monitoring stations and therefore the means to measure air quality. We address this problem by using social media to collect urban air quality information and propose a method for inferring urban air quality in Chinese cities based on China's largest social media platform, Sina Weibo combined with other meteorological data. Our method includes a data crawler to locate and acquire air-quality associated historical Weibo data, a procedure for extracting indicators from these Weibo and factors from meteorological data, a model to infer air quality index (AQI) of a city based on the extracted Weibo indicators supported by meteorological factors. We implemented the proposed method in case studies at Beijing, Shanghai, and Wuhan, China. The results show that based the Weibo indicators and meteorological factors we extracted, this method can infer the air quality conditions of a city within narrow margins of error. The method presented in this article can aid air quality assessment in cities with few or even no air quality monitoring stations. (C) 2017 Published by Elsevier Ltd.
机译:在许多发展中国家,室外空气污染是一个严重的环境问题。及时获得有关城市空气质量的准确信息是控制空气污染的第一步。但是,许多发展中国家没有监测站,因此没有测量空气质量的手段。我们通过使用社交媒体收集城市空气质量信息来解决此问题,并基于中国最大的社交媒体平台新浪微博结合其他气象数据,提出了一种推断中国城市空气质量的方法。我们的方法包括:使用数据搜寻器来定位和获取与空气质量相关的历史微博数据,从这些微博中提取指标以及从气象数据中提取因子的过程,基于提取的微博来推断城市的空气质量指数(AQI)的模型气象因素支持的指标。我们在中国北京,上海和武汉的案例研究中实施了建议的方法。结果表明,基于提取的微博指标和气象因素,该方法可以在狭窄误差范围内推断城市的空气质量状况。本文介绍的方法可以帮助空气质量监测站很少甚至没有的城市进行空气质量评估。 (C)2017由Elsevier Ltd.发布

著录项

  • 来源
    《Computers,environment and urban systems》 |2017年第11期|110-116|共7页
  • 作者单位

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China|Collaborat Innovat Ctr Geospatial Informat Techno, Wuhan 430079, Hubei, Peoples R China;

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China;

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China;

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China;

    San Diego State Univ, Dept Geog, San Diego, CA 92101 USA;

    Kent State Univ, Dept Geog, Computat Social Sci Lab, Kent, OH 44240 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Air quality; Ensemble model; Feature extraction; Social media; Sina Weibo;

    机译:空气质量集成模型特征提取社会媒体新浪微博;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号