首页> 外文期刊>Computers and Geotechnics >A two-scale hydro-mechanical-damage model for simulation of preferential gas flow in saturated clayey host rocks for nuclear repository
【24h】

A two-scale hydro-mechanical-damage model for simulation of preferential gas flow in saturated clayey host rocks for nuclear repository

机译:用于核储存饱和克莱恩主体岩石岩体仿真仿真的两尺寸水力机械损伤模型

获取原文
获取原文并翻译 | 示例

摘要

Significant amounts of gases could be generated in the post-phase of radioactive waste repositories, which may deteriorate the integrity of natural host rocks. A safety issue related to the geological disposal facilities concerns the gas migration through saturated host rocks, of which the dominant process is mainly referred to the advective gas flow, accompanied by the formation of micro-fracturing that occurs at the applied gas pressure significantly lower than the minimum principal stress (compressive stress is regarded to be positive here). These fracture formed gas pathways are found to be highly localized and dynamically unstable, which may vary temporally and spatially within the clayey rocks. A multiscale model incorporating the evolving microcracks may be appropriate to address this specific rupture pattern. The model is developed from the periodically distributed microstructures with microcracks in a porous medium. The upscaling method based on the asymptotic expansions leads to the macroscopic hydro-mechanical (HM) governing equations coupled with the normalized microcrack length. Based on the micro-mechanical energy analysis, the time-dependent damage evolution law is constructed that accounts for the subcritical microcrack propagation. The local macroscopic response of the model is analyzed with emphasis on the influence of the microstructural size, the loading rate and the reference crack velocity, which are important factors influencing the localized pathways for gas migration. Two numerical examples of air injection tests on clayey rocks are presented where the highly localized gas pathways are explicitly simulated. The comparison between the model predictions and the experimental results provides in-depth understanding of gas induced fracturing process.
机译:在放射性废物储存库的后阶段可以产生大量气体,这可能会恶化天然主体岩石的完整性。与地质处置设施相关的安全问题涉及通过饱和宿主岩石的气体迁移,其中主要过程主要提到了方向于气体流动,伴随着形成的微压裂,在施加的气体压力下显着低于最小主应力(压缩应力被认为是阳性的)。这些裂缝形成的气体途径被发现高度局部和动态不稳定,其在粘土岩石中可能在时间和空间上瞬时和空间变化。包含不断变化的微裂纹的多尺度模型可以适当地解决这种特定的破裂模式。该模型是从多孔介质中的微裂纹的周期性分布式微观结构开发的。基于渐近膨胀的升高方法导致宏观的水力 - 机械(HM)控制与归一化微裂纹长度相连的装置。基于微机械能量分析,构建了时间依赖性损伤演化法,其考虑了亚临界微裂纹繁殖。分析模型的局部宏观反应,重点是微观结构尺寸,加载速率和参考裂纹速度的影响,这是影响局部化气体迁移局部途径的重要因素。提出了克莱岩上的空气喷射试验的两个数值例子,其中明确地模拟了高度局部气体途径。模型预测与实验结果之间的比较提供了对气体诱导压裂过程的深入了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号