首页> 外文期刊>Computers and Geotechnics >Efficient Monte Carlo Simulation of parameter sensitivity in probabilistic slope stability analysis
【24h】

Efficient Monte Carlo Simulation of parameter sensitivity in probabilistic slope stability analysis

机译:概率边坡稳定性分析中参数灵敏度的有效蒙特卡洛模拟

获取原文
获取原文并翻译 | 示例

摘要

Monte Carlo Simulation (MCS) method has been widely used in probabilistic analysis of slope stability, and it provides a robust and simple way to assess failure probability. However, MCS method does not offer insight into the relative contributions of various uncertainties (e.g., inherent spatial variability of soil properties and subsurface stratigraphy) to the failure probability and suffers from a lack of resolution and efficiency at small probability levels. This paper develop a probabilistic failure analysis approach that makes use of the failure samples generated in the MCS and analyzes these failure samples to assess the effects of various uncertainties on slope failure probability. The approach contains two major components: hypothesis tests for prioritizing effects of various uncertainties and Bayesian analysis for further quantifying their effects. Equations are derived for the hypothesis tests and Bayesian analysis. The probabilistic failure analysis requires a large number of failure samples in MCS, and an advanced Monte Carlo Simulation called Subset Simulation is employed to improve efficiency of generating failure samples in MCS. As an illustration, the proposed probabilistic failure analysis approach is applied to study a design scenario of James Bay Dyke. The hypothesis tests show that the uncertainty of undrained shear strength of lacustrine clay has the most significant effect on the slope failure probability, while the uncertainty of the clay crust thickness contributes the least. The effect of the former is then further quantified by a Bayesian analysis. Both hypothesis test results and Bayesian analysis results are validated against independent sensitivity studies. It is shown that probabilistic failure analysis provides results that are equivalent to those from additional sensitivity studies, but it has the advantage of avoiding additional computational times and efforts for repeated runs of MCS in sensitivity studies.
机译:蒙特卡罗模拟(MCS)方法已广泛用于边坡稳定性的概率分析中,它提供了一种可靠且简单的方法来评估破坏概率。但是,MCS方法无法洞察各种不确定性(例如,土壤特性和地下地层的固有空间变异性)对破坏概率的相对贡献,并且在小概率水平上缺乏分辨率和效率。本文开发了一种概率失效分析方法,该方法利用了MCS中生成的失效样本并对这些失效样本进行分析,以评估各种不确定性对边坡失效概率的影响。该方法包含两个主要组成部分:用于对各种不确定性的影响进行优先级排序的假设检验,以及用于进一步量化其影响的贝叶斯分析。导出了假设检验和贝叶斯分析的方程。概率故障分析在MCS中需要大量的故障样本,而先进的蒙特卡洛模拟(称为子集模拟)被用来提高在MCS中生成故障样本的效率。作为说明,将所提出的概率故障分析方法用于研究James Bay Dyke的设计方案。假设检验表明,湖相粘土不排水抗剪强度的不确定性对边坡破坏概率的影响最大,而黏土厚度的不确定性影响最小。然后通过贝叶斯分析进一步量化前者的影响。假设检验结果和贝叶斯分析结果均经过独立的敏感性研究验证。结果表明,概率故障分析可提供与其他敏感性研究相同的结果,但它具有避免在敏感性研究中重复运行MCS的额外计算时间和精力的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号