首页> 外文期刊>Computers and Geotechnics >Prediction of probabilistic settlements via spectral stochastic meshless local Petrov-Galerkin method
【24h】

Prediction of probabilistic settlements via spectral stochastic meshless local Petrov-Galerkin method

机译:通过谱随机无网格局部Petrov-Galerkin方法预测概率沉降

获取原文
获取原文并翻译 | 示例

摘要

This study introduces the prediction of probabilistic settlements with the uncertainty in the spatial variability of Young's modulus to illustrate the preliminary development of a spectral stochastic meshless local Petrov-Galerkin (SSMLPG) method. Generalized polynomial chaos expansions of Young's moduli and a two-dimensional meshfree weak-strong formulation in elasticity are combined to derive the SSMLPG formulation. Because of the local and truly meshless nature, the SSMLPG method is more computationally efficient than available stochastic numerical methods. Two examples further show that SSMLPG-based predictions remain sufficiently accurate even in case of scattered nodes. Therefore, the SSMLPG method can be a valuable alternative for solving stochastic boundary-value problems.
机译:这项研究介绍了概率沉降的杨氏模量空间变异性的不确定性,以说明光谱随机无网格局部Petrov-Galerkin(SSMLPG)方法的初步发展。将杨氏模量的广义多项式混沌展开和弹性的二维无网格弱强公式结合起来,得出SSMLPG公式。由于局部和真正的无网格性质,SSMLPG方法比可用的随机数值方法具有更高的计算效率。两个示例进一步表明,即使在节点分散的情况下,基于SSMLPG的预测仍然足够准确。因此,SSMLPG方法可能是解决随机边值问题的有价值的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号