首页> 外文期刊>Computers and Geotechnics >Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network
【24h】

Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network

机译:人工神经网络预测地聚合物稳定黏土的无侧限抗压强度

获取原文
获取原文并翻译 | 示例

摘要

Viability of Artificial Neural Network (ANN) in predicting unconfined compressive strength (UCS) of geopolymer stabilized clayey soil has been investigated in this paper. Factors affecting UCS of geopolymer stabilized clayey soil have also been reported. Ground granulated blast furnace slag (GGBS), fly ash (FA) and blend of GGBS and FA (GGBS + FA) were chosen as source materials for geo-polymerization. 28 day UCS of 283 stabilized samples were generated with different combinations of the experimental variables. Based on experimental results ANN based UCS predictive model was devised. The prediction performance of ANN model was compared to that of multi-variable regression (MVR) analysis. Sensitivity analysis employing different methods to quantify the importance of different input parameters were discussed. 'Finally neural interpretation diagram (NID) to visualize the effect of input parameters on UCS is also presented. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文研究了人工神经网络(ANN)在预测地聚合物稳定黏土的无侧限抗压强度(UCS)方面的可行性。也已经报道了影响地聚合物稳定的粘土的UCS的因素。选择了磨碎的高炉矿渣(GGBS),粉煤灰(FA)以及GGBS和FA的混合物(GGBS + FA)作为地聚的原料。用不同的实验变量组合生成了283个稳定样品的28天UCS。基于实验结果,设计了基于人工神经网络的UCS预测模型。将ANN模型的预测性能与多变量回归(MVR)分析相比较。讨论了采用不同方法量化不同输入参数重要性的灵敏度分析。最后提出了神经解释图(NID),以可视化输入参数对UCS的影响。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号