首页> 外文期刊>Computers and Geotechnics >Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation
【24h】

Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation

机译:基于多元自适应回归样条的蒙特卡洛模拟有效的土质边坡系统可靠性分析

获取原文
获取原文并翻译 | 示例

摘要

System effects should be considered in the probabilistic analysis of a layered soil slope due to the potential existence of multiple failure modes. This paper presents a system reliability analysis approach for layered soil slopes based on multivariate adaptive regression splines (MARS) and Monte Carlo simulation (MCS). The proposed approach is achieved in a two-phase process. First, MARS is constructed based on a group of training samples that are generated by Latin hypercube sampling (LHS). MARS is validated by a specific number of testing samples which are randomly generated per the underlying distributions. Second, the established MARS is integrated with MCS to estimate the system failure probability of slopes. Two types of multi-layered soil slopes (cohesive slope and c-phi slope) are examined to assess the capability and validity of the proposed approach. Each type of slope includes two examples with different statistics and system failure probability levels. The proposed approach can provide an accurate estimation of the system failure probability of a soil slope. In addition, the proposed approach is more accurate than the quadratic response surface method (QRSM) and the second-order stochastic response surface method (SRSM) for slopes with highly nonlinear limit state functions (LSFs). The results show that the proposed MARS-based MCS is a favorable and useful tool for the system reliability analysis of soil slopes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:由于可能存在多种破坏模式,因此在层状土坡的概率分析中应考虑系统效应。本文提出了一种基于多元自适应回归样条(MARS)和蒙特卡洛模拟(MCS)的分层土质边坡系统可靠性分析方法。所提出的方法是通过两阶段过程实现的。首先,MARS是基于一组训练样本构建的,这些训练样本是通过拉丁超立方体采样(LHS)生成的。 MARS通过特定数量的测试样本验证,这些样本是根据基础分布随机生成的。其次,将已建立的MARS与MCS集成在一起,以估计边坡的系统故障概率。研究了两种类型的多层土质边坡(内聚坡度和c-phi坡度),以评估该方法的能力和有效性。每种类型的斜率都包括两个具有不同统计量和系统故障概率级别的示例。所提出的方法可以提供对土质边坡系统故障概率的准确估计。此外,对于具有高度非线性极限状态函数(LSF)的边坡,所提出的方法比二次响应面方法(QRSM)和二阶随机响应面方法(SRSM)更准确。结果表明,所提出的基于MARS的MCS是用于土质边坡系统可靠性分析的有利且有用的工具。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号