首页> 外文期刊>Computer vision and image understanding >Tensor scale: A local morphometric parameter with applications to computer vision and image processing
【24h】

Tensor scale: A local morphometric parameter with applications to computer vision and image processing

机译:张量尺度:局部形态计量学参数,应用于计算机视觉和图像处理

获取原文
获取原文并翻译 | 示例

摘要

Scale is a widely used notion in image analysis that evolved in the form of scale-space theory whose key idea is to represent and analyze an image it various resolutions, Recently. the notion of localized scale-a space-variant resolution scheme has drawn significant research interest. Previously, we reported local morphometric scale using a spherical model. A major limitation of the spherical model is that it ignores structure orientation and anistropy. and therefore fails to be optimal in many imaging applications including biomedical ones where structures are inherently anisotropic and have mixed orientations. Here, we introduce it new concept called "tensor scale"-a local morphometric parameter Yielding a Unified representation of structure size, orientation, and anisotropy. Also, a few applications of tensor scale in computer vision and image analysis, especially. in image filtering are illustrated, At any Image point, its tensor scale is the parametric representation of the largest ellipse (in 21)) or ellipsoid (in 3D) centered at that point and contained in the same homogeneous regions An algorithmic framework to compute tensor scale at any image Point is proposed and results of its application on several real images are presented. Also, performance of the tensor scale computation method under image rotation, varying pixel size, and background inhomogeneity is studied. Results of a quantitative analysis evaluating performance of the method on 21) brain phantom images at various levels of noise and blur, and a fixed background inhomogeneity are presented. Agreement between tensor scale images computed on matching image slices from two 3D magnetic resonance data acquired simultaneously using different protocols are demonstrated. Finally, the application of tensor scale in anisotropic diffusive image filtering is presented that encourages smoothing inside a homogeneous region and also along edges and elongated structures while discourages blurring across them. Both qualitative and quantitative results of application of the new filtering method have been presented and compared with the results obtained by spherical scale-based and standard diffusive filtering methods. (c) 2005 Published by Elsevier Inc.
机译:比例尺是图像分析中广泛使用的概念,它以比例空间理论的形式发展,其主要思想是代表并分析具有各种分辨率的图像。局部尺度的概念-空间变分辨率方案引起了人们极大的研究兴趣。以前,我们使用球形模型报告了局部形态计量比例。球形模型的主要局限性在于它忽略了结构定向和人类学。因此无法在包括生物医学结构在内的许多成像应用中达到最佳,在这些应用中,结构固有地是各向异性的并且具有混合的方向。在这里,我们为它介绍一个称为“张量尺度”的新概念-一种局部形态计量参数,可以统一表示结构尺寸,方向和各向异性。同样,张量尺度在计算机视觉和图像分析中的一些应用尤其是。在图像过滤中进行了说明,在任何图像点,其张量尺度都是以该点为中心并包含在相同的均匀区域中的最大椭圆(在21D中)或椭球(在3D中)的参数表示。计算张量的算法框架提出了在任何图像点上的缩放比例,并提出了其在多个真实图像上的应用结果。此外,研究了张量尺度计算方法在图像旋转,像素大小变化和背景不均匀性下的性能。提出了定量分析的结果,该方法评估了该方法对各种噪声和模糊水平以及固定背景不均匀性在21)脑模型图像上的性能。证明了根据使用不同协议同时获取的两个3D磁共振数据在匹配图像切片上计算出的张量尺度图像之间的一致性。最后,提出了张量标度在各向异性扩散图像滤波中的应用,该方法鼓励在均质区域内部以及沿边缘和细长结构进行平滑处理,同时阻止跨边界模糊。提出了使用这种新滤波方法的定性和定量结果,并与基于球形标度和标准扩散滤波方法获得的结果进行了比较。 (c)2005年由Elsevier Inc.发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号