首页> 外文期刊>Computer vision and image understanding >A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data
【24h】

A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data

机译:距离图像数据三角网格上高斯和平均曲率估计方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Estimating intrinsic geometric properties of a surface from a polygonal mesh obtained from range data is an important stage of numerous algorithms in computer and robot vision, computer graphics, geometric modeling, and industrial and biomedical engineering. This work considers different computational schemes for local estimation of intrinsic curvature geometric properties. Four different algorithms and their modifications were tested on triangular meshes that represent tessellations of synthetic geometric models. The results were compared with the analytically computed values of the Gaussian and mean curvatures of the non-uniform rational B-spline (NURBS) surfaces from which these meshes originated. The algorithms were also tested on range images of geometric objects. The results were compared with the analytic values of the Gaussian and mean curvatures of the scanned geometric objects. This work manifests the best algorithms suited for Gaussian and mean curvature estimation, and shows that different algorithms should be employed to compute the Gaussian and mean curvatures.
机译:从范围数据获得的多边形网格中估计表面的固有几何特性是计算机和机器人视觉,计算机图形学,几何建模以及工业和生物医学工程中众多算法的重要阶段。这项工作考虑了本征曲率几何特性的局部估计的不同计算方案。在代表合成几何模型的方格的三角网格上测试了四种不同的算法及其修改。将结果与分析所得的高斯分析值和产生这些网格的非均匀有理B样条(NURBS)曲面的平均曲率进行比较。还对几何对象的范围图像测试了算法。将结果与扫描的几何对象的高斯分析值和平均曲率进行比较。这项工作表明了适用于高斯和平均曲率估计的最佳算法,并表明应采用不同的算法来计算高斯和平均曲率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号