首页> 外文期刊>Computer vision and image understanding >An improved likelihood model for eye tracking
【24h】

An improved likelihood model for eye tracking

机译:用于眼睛跟踪的改进似然模型

获取原文
获取原文并翻译 | 示例

摘要

While existing eye detection and tracking algorithms can work reasonably well in a controlled environment, they tend to perform poorly under real world imaging conditions where the lighting produces shadows and the person's eyes can be occluded by e.g. glasses or makeup. As a result, pixel clusters associated with the eyes tend to be grouped together with background-features. This problem occurs both for eye detection and eye tracking. Problems that especially plague eye tracking include head movement, eye blinking and light changes, all of which can cause the eyes to suddenly disappear. The usual approach in such cases is to abandon the tracking routine and re-initialize eye detection. Of course this may be a difficult process due to missed data problem. Accordingly, what is needed is an efficient method of reliably tracking a person's eyes between successively produced video image frames, even in situations where the person's head turns, the eyes momentarily close and/or the lighting conditions are variable. The present paper is directed to an efficient and reliable method of tracking a human eye between successively produced infrared interlaced image frames where the lighting conditions are challenging. It proposes a log likelihood-ratio function of foreground and background models in a particle filter-based eye tracking framework. It fuses key information from even, odd infrared fields (dark and bright-pupil) and their corresponding subtractive image into one single observation model. Experimental validations show good performance of the proposed eye tracker in challenging conditions that include moderate head motion and significant local and global lighting changes. The paper presents also an eye detector that relies on physiological infrared eye responses and a modified version of a cascaded classifier.
机译:尽管现有的眼睛检测和跟踪算法在受控环境中可以很好地工作,但是它们往往在现实世界中的成像条件下表现不佳,在这种情况下,照明会产生阴影,并且人的眼睛可能会被遮挡。眼镜或化妆。结果,与眼睛相关联的像素簇倾向于与背景特征一起分组。眼睛检测和眼睛跟踪都会出现此问题。困扰眼睛追踪的问题包括头部移动,眨眼和光线变化,所有这些都会导致眼睛突然消失。在这种情况下,通常的方法是放弃跟踪程序并重新初始化眼睛检测。当然,由于丢失数据问题,这可能是一个困难的过程。因此,需要一种有效的方法,即使在人的头部转动,眼睛瞬间闭合和/或照明条件可变的情况下,也可以在连续产生的视频图像帧之间可靠地跟踪人的眼睛。本文针对在光照条件具有挑战性的连续产生的红外隔行扫描图像帧之间跟踪人眼的有效而可靠的方法。在基于粒子滤波的眼动追踪框架中,提出了前景模型和背景模型的对数似然比函数。它将来自偶数,奇数红外场(暗和亮瞳孔)的关键信息及其对应的减影图像融合到一个单一的观察模型中。实验验证表明,所提出的眼动仪在挑战性条件下具有良好的性能,这些条件包括适度的头部运动以及局部和全局照明变化。该论文还提出了一种眼部检测器,该检测器依靠生理红外眼部反应和级联分类器的改进版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号