首页> 外文期刊>Computer vision and image understanding >Design and implementation of embedded computer vision systems based on particle filters
【24h】

Design and implementation of embedded computer vision systems based on particle filters

机译:基于粒子滤波器的嵌入式计算机视觉系统的设计与实现

获取原文
获取原文并翻译 | 示例

摘要

Particle filtering methods are gradually attaining significant importance in a variety of embedded com-puter vision applications. For example, in smart camera systems, object tracking is a very important application and particle filter based tracking algorithms have shown promising results with robust track-ing performance. However, most particle filters involve vast amount of computational complexity, thereby intensifying the challenges faced in their real-time, embedded implementation. Many of these applications share common characteristics, and the same system design can be reused by identifying and varying key system parameters and varying them appropriately. In this paper, we present a Sys-tem-on-Chip (SoC) architecture involving both hardware and software components for a class of particle filters. The framework uses parameterization to enable fast and efficient reuse of the architecture with minimal re-design effort for a wide range of particle filtering applications as well as implementation plat-forms. Using this framework, we explore different design options for implementing three different particle fil-tering applications on field-programmable gate arrays (FPGAs). The first two applications involve particle filters with one-dimensional state transition models, and are used to demonstrate the key features of the framework. The main focus of this paper is on design methodology for hardware/software implementa-tion of multi-dimensional particle filter application and we explore this in the third application which is a 3D facial pose tracking system for videos. In this multi-dimensional particle filtering application, we extend our proposed architecture with models for hardware/software co-design so that limited hardware resources can be utilized most effectively. Our experiments demonstrate that the framework is easy and intuitive to use, while providing for efficient design and implementation. We present different memory management schemes along with results on trade-offs between area (FPGA resource requirement) and execution speed.
机译:粒子滤波方法在各种嵌入式计算机视觉应用中正逐渐变得越来越重要。例如,在智能相机系统中,对象跟踪是非常重要的应用程序,基于粒子过滤器的跟踪算法显示了具有强大跟踪性能的良好结果。但是,大多数粒子过滤器涉及大量的计算复杂性,从而加剧了其实时嵌入式实现所面临的挑战。这些应用程序中许多都有共同的特征,并且可以通过识别和更改关键系统参数并适当地更改它们来重用相同的系统设计。在本文中,我们提出了一种片上系统(SoC)架构,其中涉及一类粒子滤波器的硬件和软件组件。该框架使用参数化功能,可以快速有效地重用该体系结构,而对各种粒子过滤应用程序和实现平台的重新设计工作却最少。使用此框架,我们探索了不同的设计选项,以在现场可编程门阵列(FPGA)上实现三种不同的粒子过滤应用程序。前两个应用程序涉及具有一维状态转换模型的粒子过滤器,用于演示框架的关键功能。本文的主要重点是针对多维粒子滤波器应用程序的硬件/软件实现的设计方法,我们将在第三个应用程序中对此进行探索,该应用程序是用于视频的3D面部姿势跟踪系统。在此多维粒子过滤应用程序中,我们用硬件/软件协同设计模型扩展了我们提出的体系结构,以便可以最有效地利用有限的硬件资源。我们的实验表明,该框架易于使用和直观,同时提供了有效的设计和实现。我们介绍了不同的内存管理方案,以及在面积(FPGA资源需求)和执行速度之间进行权衡的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号