首页> 外文期刊>Computer vision and image understanding >A fast stereo matching algorithm suitable for embedded real-time systems
【24h】

A fast stereo matching algorithm suitable for embedded real-time systems

机译:适用于嵌入式实时系统的快速立体声匹配算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the challenge of fast stereo matching for embedded systems is tackled. Limited resources, e.g. memory and processing power, and most importantly real-time capability on embedded systems for robotic applications, do not permit the use of most sophisticated stereo matching approaches. The strengths and weaknesses of different matching approaches have been analyzed and a well-suited solu-tion has been found in a Census-based stereo matching algorithm. The novelty of the algorithm used is the explicit adaption and optimization of the well-known Census transform in respect to embedded real-time systems in software. The most important change in comparison with the classic Census trans-form is the usage of a sparse Census mask which halves the processing time with nearly unchanged matching quality. This is due the fact that large sparse Census masks perform better than small dense masks with the same processing effort. The evidence of this assumption is given by the results of exper-iments with different mask sizes. Another contribution of this work is the presentation of a complete ste-reo matching system with its correlation-based core algorithm, the detailed analysis and evaluation of the results, and the optimized high speed realization on different embedded and PC platforms. The algo-rithm handles difficult areas for stereo matching, such as areas with low texture, very well in comparison to state-of-the-art real-time methods. It can successfully eliminate false positives to provide reliable 3D data. The system is robust, easy to parameterize and offers high flexibility. It also achieves high perfor-mance on several, including resource-limited, systems without losing the good quality of stereo match-ing. A detailed performance analysis of the algorithm is given for optimized reference implementations on various commercial of the shelf (COTS) platforms, e.g. a PC, a DSP and a GPU, reaching a frame rate of up to 75 fps for 640 x 480 images and 50 disparities. The matching quality and processing time is com-pared to other algorithms on the Middlebury stereo evaluation website reaching a middle quality and top performance rank. Additional evaluation is done by comparing the results with a very fast and well-known sum of absolute differences algorithm using several Middlebury datasets and real-world scenarios.
机译:本文解决了嵌入式系统快速立体声匹配的挑战。资源有限,例如内存和处理能力,以及最重要的是嵌入式系统中用于机器人应用程序的实时功能,均不允许使用最复杂的立体声匹配方法。分析了不同匹配方法的优缺点,并在基于人口普查的立体声匹配算法中找到了合适的解决方案。所使用算法的新颖性是针对软件中的嵌入式实时系统对众所周知的人口普查变换进行的显式调整和优化。与经典的Census转换相比,最重要的变化是使用了稀疏的Census蒙版,它可以将处理时间减半,并且匹配质量几乎保持不变。这是由于以下事实:在相同的处理努力下,大型稀疏人口普查面具的性能优于小型密集人口普查面具。这种假设的证据是由不同面罩尺寸的实验结果给出的。这项工作的另一个贡献是展示了一个完整的立体声匹配系统及其基于相关的核心算法,对结果进行了详细的分析和评估,并在不同的嵌入式和PC平台上优化了高速实现。与最新的实时方法相比,该算法可以很好地处理难以进行立体匹配的区域,例如具有低纹理的区域。它可以成功消除误报,以提供可靠的3D数据。该系统功能强大,易于设置参数并具有很高的灵活性。它还可以在包括资源有限的多个系统上实现高性能,而不会损失立体声匹配的良好质量。给出了该算法的详细性能分析,以在各种商用货架(COTS)平台上优化参考实现。 PC,DSP和GPU,对于640 x 480的图像和50个视差,帧速率高达75 fps。匹配质量和处理时间与Middlebury立体声评估网站上的其他算法相比,达到中等质量和顶级性能。通过将结果与使用多个Middlebury数据集和实际场景的非常快速且众所周知的绝对差总和算法进行比较,可以进行其他评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号