首页> 外文期刊>Computer vision and image understanding >Models and algorithms for computing the common labelling of a set of attributed graphs
【24h】

Models and algorithms for computing the common labelling of a set of attributed graphs

机译:用于计算一组属性图的公共标签的模型和算法

获取原文
获取原文并翻译 | 示例

摘要

In some methodologies, it is needed a consistent common labelling between the vertices of a graph set, for instance, to compute a representative of a set of graphs. This is an NP-complete problem with an exponential computational cost depending on the number of nodes and the number of graphs. In the current paper, we present two new methodologies to compute a sub-optimal common labelling. The former focuses in extending the Graduated Assignment algorithm, although the methodology could be applied to other probabilistic graph-matching algorithms. The latter goes one step further and computes the common labelling whereby a new iterative sub-optimal algorithm. Results show that the new methodologies improve the state of the art obtaining more precise results than the most recent method with similar computational cost.
机译:在某些方法中,需要在图形集的顶点之间具有一致的通用标签,例如,以计算一组图形的代表。这是一个NP完全问题,其计算量取决于节点数和图数。在当前的论文中,我们提出了两种新的方法来计算次优的通用标签。前者着重于扩展分​​级分配算法,尽管该方法可以应用于其他概率图匹配算法。后者进一步走了一步,计算了公共标记,从而提出了新的迭代次优算法。结果表明,与具有相似计算成本的最新方法相比,新方法改进了现有技术,获得了更精确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号