首页> 外文期刊>Computer vision and image understanding >Tensor scale: An analytic approach with efficient computation and applications
【24h】

Tensor scale: An analytic approach with efficient computation and applications

机译:张量量表:一种具有有效计算和应用的分析方法

获取原文
获取原文并翻译 | 示例

摘要

Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as "tensor scale" using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert's structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sine interpolation methods.
机译:比例尺是计算机视觉和图像理解中广泛使用的概念,它以比例空间理论的形式发展,其主要思想是代表并分析各种分辨率的图像。最近,我们使用椭球模型引入了局部形态计量尺度的概念,称为“张量尺度”,该模型可统一表示结构尺寸,方向和各向异性。在先前的工作中,使用2-D算法方法来描述张量标度,并且缺少精确的分析定义。而且,由于高计算复杂度,使用先前的框架在3-D中应用张量标度也不切实际。在本文中,张量尺度的解析定义是为捕获局部结构尺寸,方向和各向异性的n维(n-D)图像制定的。此外,提出了使用几种新颖的微分几何方法的二维和3-D高效计算解决方案,并通过实验检验了结果的准确性。同样,得出张量尺度的矩阵表示,以促进包括张量场平滑以捕获更大的上下文知识在内的若干操作。最后,介绍了张量标度在图像滤波和n线性插值中的应用,并与相应的现有技术方法进行了比较,检验了其结果的性能。具体而言,将基于张量标度的图像滤波的性能与基于梯度和Weickert基于结构张量的扩散滤波算法进行了比较。此外,与标准n线性和加窗正弦插值方法相比,评估了基于张量标度的n线性插值的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号