首页> 外文期刊>Computer vision and image understanding >A robust multi-scale integration method to obtain the depth from gradient maps
【24h】

A robust multi-scale integration method to obtain the depth from gradient maps

机译:一种从梯度图获得深度的稳健的多尺度积分方法

获取原文
获取原文并翻译 | 示例

摘要

We describe a robust method for the recovery of the depth map (or height map) from a gradient map (or normal map) of a scene, such as would be obtained by photometric stereo or interferometry. Our method allows for uncertain or missing samples, which are often present in experimentally measured gradient maps, and also for sharp discontinuities in the scene's depth, e.g. along object silhouette edges. By using a multi-scale approach, our integration algorithm achieves linear time and memory costs. A key feature of our method is the allowance for a given weight map that flags unreliable or missing gradient samples. We also describe several integration methods from the literature that are commonly used for this task. Based on theoretical analysis and tests with various synthetic and measured gradient maps, we argue that our algorithm is as accurate as the best existing methods, handling incomplete data and discontinuities, and is more efficient in time and memory usage, especially for large gradient maps.
机译:我们描述了一种用于从场景的梯度图(或法线图)恢复深度图(或高度图)的鲁棒方法,例如通过光度立体或干涉法可以获得的方法。我们的方法允许不确定或丢失的样本(通常在实验测量的梯度图中出现)以及场景深度的急剧不连续性,例如沿着对象轮廓边缘。通过使用多尺度方法,我们的集成算法实现了线性时间和内存成本。我们方法的关键特征是给定重量图的余量,该重量图标记了不可靠或丢失的梯度样本。我们还从文献中描述了通常用于此任务的几种集成方法。基于理论分析以及对各种合成的和测量的梯度图的测试,我们认为我们的算法与现有的最佳方法一样准确,可以处理不完整的数据和不连续性,并且在时间和内存使用上效率更高,尤其是对于大型梯度图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号