首页> 外文期刊>Computer vision and image understanding >Efficient multi-camera vehicle detection, tracking, and identification in a tunnel surveillance application
【24h】

Efficient multi-camera vehicle detection, tracking, and identification in a tunnel surveillance application

机译:隧道监控应用中的高效多摄像机车辆检测,跟踪和识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an integrated solution for the problem of detecting, tracking and identifying vehicles in a tunnel surveillance application, taking into account practical constraints including real-time operation, poor imaging conditions, and a decentralized architecture. Vehicles are followed through the tunnel by a network of non-overlapping cameras. They are detected and tracked in each camera and then identified, i.e. matched to any of the vehicles detected in the previous camera (s). To limit the computational load, we propose to reuse the same set of Haar-features for each of these steps. For the detection, we use an AdaBoost cascade. Here we introduce a composite confidence score, integrating information from all stages of the cascade. A subset of the features used for detection is then selected, optimizing for the identification problem. This results in a compact binary 'vehicle fingerprint', requiring minimal bandwidth. Finally, we show that the same subset of features can also be used effectively for tracking. This Haar-features based 'tracking-by-identification' yields surprisingly good results on standard datasets, without the need to update the model online. The general multi-camera framework is validated using three tunnel surveillance videos.
机译:本文提出了一种集成解决方案,用于解决在隧道监视应用中检测,跟踪和识别车辆的问题,同时考虑到实际约束条件,包括实时操作,不良的成像条件和分散的体系结构。车辆通过隧道,由不重叠的摄像头网络跟踪。在每个摄像机中对其进行检测和跟踪,然后对其进行识别,即与前一个摄像机中检测到的任何车辆进行匹配。为了限制计算量,我们建议为每个步骤重用相同的Haar功能集。对于检测,我们使用AdaBoost级联。在这里,我们介绍了一个综合的置信度得分,它集成了级联各个阶段的信息。然后选择用于检测的特征子集,以优化识别问题。这导致紧凑的二进制“车辆指纹”,需要最小的带宽。最后,我们证明了相同的特征子集也可以有效地用于跟踪。这种基于Haar功能的“识别跟踪”在标准数据集上产生了令人惊讶的良好结果,而无需在线更新模型。通用的多摄像机框架使用三个隧道监控视频进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号