首页> 外文期刊>Computer vision and image understanding >A multimodal temporal panorama approach for moving vehicle detection, reconstruction and classification
【24h】

A multimodal temporal panorama approach for moving vehicle detection, reconstruction and classification

机译:用于移动车辆检测,重建和分类的多模式时间全景方法

获取原文
获取原文并翻译 | 示例

摘要

Moving vehicle detection and classification using multimodal data is a challenging task in data collection, audio-visual alignment, data labeling and feature selection under uncontrolled environments with occlusions, motion blurs, varying image resolutions and perspective distortions. In this work, we propose an effective multimodal temporal panorama approach for moving vehicle detection and classification using a novel long-range audio-visual sensing system. A new audio-visual vehicle (AW) dataset is created, which features automatic vehicle detection and audio-visual alignment, accurate vehicle extraction and reconstruction, and efficient data labeling. In particular, vehicles' visual images are reconstructed once detected in order to remove most of the occlusions, motion blurs, and variations of perspective views. Multimodal audio-visual features are extracted, including global geometric features (aspect ratios, profiles), local structure features (HOGs), as well various audio features (MFCCs, etc.). Using radial-based SVMs, the effectiveness of the integration of these multimodal features is thoroughly and systematically studied. The concept of MTP may not be only limited to visual, motion and audio modalities; it could also be applicable to other sensing modalities that can obtain data in the temporal domain.
机译:在具有遮挡,运动模糊,变化的图像分辨率和透视畸变的不受控制的环境下,使用多模式数据对车辆进行检测和分类是一项艰巨的任务,需要进行数据收集,视听对齐,数据标记和特征选择。在这项工作中,我们提出了一种有效的多模式时态全景方法,该方法使用新型远程视听感测系统对移动车辆进行检测和分类。创建了一个新的视听车辆(AW)数据集,该数据集具有自动车辆检测和视听对齐,准确的车辆提取和重建以及有效的数据标记的功能。尤其是,一旦检测到车辆的视觉图像,便会对其进行重建,以消除大部分遮挡,运动模糊和透视图变化。提取多模式视听特征,包括整体几何特征(长宽比,轮廓),局部结构特征(HOG)以及各种音频特征(MFCC等)。使用基于径向的SVM,对这些多峰特征集成的有效性进行了全面而系统的研究。 MTP的概念可能不仅限于视觉,运动和音频形式。它也可以应用于可以在时域中获取数据的其他感测模态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号