首页> 外文期刊>Computer vision and image understanding >Hierarchical multi-channel hidden semi Markov graphical models for activity recognition
【24h】

Hierarchical multi-channel hidden semi Markov graphical models for activity recognition

机译:用于活动识别的分层多通道隐藏半Markov图形模型

获取原文
获取原文并翻译 | 示例

摘要

Recognizing human actions from a stream of unsegmented sensory observations is important for a number of applications such as surveillance and human-computer interaction. A wide range of graphical models have been proposed for these tasks, and are typically extensions of the generative hidden Markov models (HMMs) or their discriminative counterpart, conditional random fields (CRFs). These extensions typically address one of three key limitations in the basic HMM/CRF formalism - unrealistic models for the duration of a sub-event, not encoding interactions among multiple agents directly and not modeling the inherent hierarchical organization of activities. In our work, we present a family of graphical models that generalize such extensions and simultaneously model event duration, multi agent interactions and hierarchical structure. We also present general algorithms for efficient learning and inference in such models based on local variational approximations. We demonstrate the effectiveness of our framework by developing graphical models for applications in automatic sign language (ASL) recognition, and for gesture and action recognition in videos. Our methods show results comparable to state-of-the-art in the datasets we consider, while requiring far fewer training examples compared to low-level feature based methods.
机译:从未分割的感官观察流中识别人的动作对于诸如监视和人机交互之类的许多应用很重要。已经针对这些任务提出了各种各样的图形模型,这些图形模型通常是生成隐式马尔可夫模型(HMM)或它们的判别式条件随机场(CRF)的扩展。这些扩展通常解决基本HMM / CRF形式主义的三个关键限制之一-子事件持续时间的不现实模型,不直接编码多个代理之间的交互,也不对活动的固有层次结构进行建模。在我们的工作中,我们提供了一系列图形化模型,这些图形化模型概括了这些扩展,并同时对事件持续时间,多主体交互和层次结构进行建模。我们还提出了基于局部变分近似的此类模型中用于有效学习和推理的通用算法。我们通过开发用于自动手语(ASL)识别的应用程序以及视频中的手势和动作识别的图形模型,展示了我们框架的有效性。我们的方法在我们考虑的数据集中显示出与最新技术相当的结果,而与基于低级特征的方法相比,所需的训练示例要少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号