首页> 外文期刊>Computer vision and image understanding >Dynamic texture segmentation based on deterministic partially self-avoiding walks
【24h】

Dynamic texture segmentation based on deterministic partially self-avoiding walks

机译:基于确定性部分自避免行走的动态纹理分割

获取原文
获取原文并翻译 | 示例

摘要

Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known fc-means algorithm. Although the fc-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the fc-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
机译:最近,由于多媒体数据库的爆炸性增长,人们对动态纹理有了相当大的兴趣。此外,动态纹理出现在各种各样的视频中,这使其在涉及对物理现象建模的应用程序中非常重要。因此,动态纹理已经成为一种新的研究领域,它将静态或空间纹理扩展到时空域。在本文中,我们提出了一种基于自动机理论和k-means算法的动态纹理分割新方法。在这种方法中,通过在视频的三个正交平面上应用确定性的部分自规避走,为每个像素提取特征向量。然后,这些特征向量通过众所周知的fc-means算法聚类。尽管fc-means算法显示出有趣的结果,但它只能确保其收敛到局部最小值,从而影响分割的最终结果。为了克服此缺点,我们比较了fc-means的六种初始化方法。实验结果表明,与最新的分割方法相比,我们提出的方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号