首页> 外文期刊>Computer vision and image understanding >Sensitivity analysis for biometric systems: A methodology based on orthogonal experiment designs
【24h】

Sensitivity analysis for biometric systems: A methodology based on orthogonal experiment designs

机译:生物识别系统的灵敏度分析:基于正交实验设计的方法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to introduce an effective and structured methodology for carrying out a biometric system sensitivity analysis. The goal of sensitivity analysis is to provide the researcher/developer with insight and understanding of the key factors-algorithmic, subject-based, procedural, image quality, environmental, among others-that affect the matching performance of the biometric system under study. This proposed methodology consists of two steps: (1) the design and execution of orthogonal fractional factorial experiment designs which allow the scientist to efficiently investigate the effect of a large number of factors-and interactions-simultaneously, and (2) the use of a select set of statistical data analysis graphical procedures which are fine-tuned to unambiguously highlight important factors, important interactions, and locally-optimal settings. We illustrate this methodology by application to a study of VAS1R (Video-based Automated System for Iris Recognition)-N1ST iris-based biometric system. In particular, we investigated k - 8 algorithmic factors from the VASIR system by constructing a (2~(6-1) × 31 × 41) orthogonal fractional factorial design, generating the corresponding performance data, and applying an appropriate set of analysis graphics to determine the relative importance of the eight factors, the relative importance of the 28 two-term interactions, and the local best settings of the eight algorithms. The results showed that VASIR's performance was primarily driven by six factors out of the eight, along with four two-term interactions. A virtue of our two-step methodology is that it is systematic and general, and hence may be applied with equal rigor and effectiveness to other biometric systems, such as fingerprints, face, voice, and DNA.
机译:本文的目的是介绍一种有效的结构化方法,以进行生物特征识别系统的敏感性分析。敏感性分析的目的是为研究人员/开发人员提供对影响研究中的生物识别系统匹配性能的关键因素(算法,基于主题,过程,图像质量,环境等)的见识和理解。该拟议的方法包括两个步骤:(1)正交分数阶乘实验设计的设计和执行,使科学家能够有效地同时研究大量因素和相互作用的影响,以及(2)使用选择一组统计数据分析图形程序,这些程序经过微调以明确突出重要因素,重要交互作用和局部最佳设置。我们通过应用到VAS1R(基于视频的虹膜识别自动系统)-N1ST基于虹膜的生物识别系统的研究中来说明这种方法。特别是,我们通过构造(2〜(6-1)×31×41)正交分数阶乘设计,生成相应的性能数据,并将适当的分析图形集应用于VASIR系统,研究了k-8个算法因子。确定这8个因素的相对重要性,28个两项交互作用的相对重要性以及这8个算法的局部最佳设置。结果表明,VASIR的绩效主要受八个因素中的六个因素以及四个两因素相互作用的影响。我们的两步法的优点在于它是系统的和通用的,因此可以同样严格和有效地应用于其他生物识别系统,例如指纹,面部,声音和DNA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号