首页> 外文期刊>Computer vision and image understanding >Detecting end-effectors on 2.5D data using geometric deformable models: Application to human pose estimation
【24h】

Detecting end-effectors on 2.5D data using geometric deformable models: Application to human pose estimation

机译:使用几何可变形模型在2.5D数据上检测末端执行器:在人体姿势估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

End-effectors are usually related to the location of limbs, and their reliable detection enables robust body tracking as well as accurate pose estimation. Recent innovation in depth cameras has re-stated the pose estimation problem. We focus on the information provided by these sensors, for which we borrow the name 2.5D data from the Graphics community. In this paper we propose a human pose estimation algorithm based on topological propagation. Geometric Deformable Models are used to carry out such propagation, implemented according to the Narrow Band Level Set approach. A variant of the latter method is proposed, including a density restriction which helps preserving the topological properties of the object under analysis. Principal end-effectors are extracted from a directed graph weighted with geodesic distances, also providing a skeletal-like structure describing human pose. An evaluation against reference methods is performed with promising results. The proposed solution allows a frame-wise end-effector detection, with no temporal tracking involved, which may be generalized to the tracking of other objects beyond human body.
机译:末端执行器通常与四肢的位置有关,其可靠的检测可以实现可靠的身体跟踪以及准确的姿势估计。深度相机的最新创新重新提出了姿势估计问题。我们专注于这些传感器提供的信息,为此我们从Graphics社区借来了2.5D数据的名称。在本文中,我们提出了一种基于拓扑传播的人体姿势估计算法。几何可变形模型用于执行这种传播,根据窄带级别集方法实现。提出了后一种方法的一种变体,其中包括密度限制,该密度限制有助于保留分析对象的拓扑特性。主要的末端执行器是从具有测地距离加权的有向图中提取的,还提供了描述人体姿势的类似骨骼的结构。根据参考方法进行的评估结果令人满意。所提出的解决方案允许在不涉及时间跟踪的情况下进行逐帧的末端执行器检测,这可以推广到对人体以外的其他对象的跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号