首页> 外文期刊>Computer vision and image understanding >Reweighted sparse subspace clustering
【24h】

Reweighted sparse subspace clustering

机译:加权稀疏子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Motion segmentation and human face clustering are two fundamental problems in computer vision. The state-of-the-art algorithms employ the subspace clustering scheme when processing the two problems. Among these algorithms, sparse subspace clustering (SSC) achieves the state-of-the-art clustering performance via solving a ℓ_1 minimization problem and employing the spectral clustering technique for clustering data points into different subspaces. In this paper, we propose an iterative weighting (reweighted) ℓ_1 minimization framework which largely improves the performance of the traditional ℓ_1 minimization framework. The reweighted ℓ_1 minimization framework makes a better approximation to the ℓ_0 minimization than tradition ℓ_1 minimization framework. Following the reweighted ℓ_1 minimization framework, we propose a new subspace clustering algorithm, namely, reweighted sparse subspace clustering (RSSC). Through an extensive evaluation on three benchmark datasets, we demonstrate that the proposed RSSC algorithm significantly reduces the clustering errors over the SSC algorithm while the additional reweighted step has a moderate impact on the computational cost. The proposed RSSC also achieves lowest clustering errors among recently proposed algorithms. On the other hand, as majority of the algorithms were evaluated on the Hopkins155 dataset, which is insufficient of non-rigid motion sequences, the dataset can hardly reflect the ability of the existing algorithms on processing non-rigid motion segmentation. Therefore, we evaluate the performance of the proposed RSSC and state-of-the-art algorithms on the Freiburg-Berkeley Motion Segmentation Dataset, which mainly contains non-rigid motion sequences. The performance of these state-of-the-art algorithms, as well as RSSC, will drop dramatically on this dataset with mostly non-rigid motion sequences. Though the proposed RSSC achieves the better performance than other algorithms, the results suggest that novel algorithms that focus on segmentation of non-rigid motions are still in need.
机译:运动分割和人脸聚类是计算机视觉中的两个基本问题。在处理两个问题时,最新的算法采用子空间聚类方案。在这些算法中,稀疏子空间聚类(SSC)通过解决ℓ_1最小化问题并采用频谱聚类技术将数据点聚类到不同的子空间中,从而实现了最新的聚类性能。在本文中,我们提出了一种迭代加权(重新加权)ℓ_1最小化框架,该框架大大改善了传统ℓ_1最小化框架的性能。与传统的ℓ_1最小化框架相比,重新加权的ℓ_1最小化框架对ℓ_0最小化的近似更好。遵循重新加权的ℓ_1最小化框架,我们提出了一种新的子空间聚类算法,即重新加权的稀疏子空间聚类(RSSC)。通过对三个基准数据集的广泛评估,我们证明了所提出的RSSC算法比SSC算法显着降低了聚类误差,而额外的重新加权步骤对计算成本有中等影响。在最近提出的算法中,提出的RSSC还实现了最低的聚类误差。另一方面,由于大多数算法是在Hopkins155数据集上进行评估的,这对于非刚性运动序列来说是不够的,因此该数据集几乎无法反映现有算法处理非刚性运动分割的能力。因此,我们在主要包含非刚性运动序列的Freiburg-Berkeley运动分割数据集上评估了提出的RSSC和最新算法的性能。这些最先进的算法以及RSSC的性能将在此数据集上(主要是非刚性运动序列)急剧下降。尽管所提出的RSSC比其他算法具有更好的性能,但结果表明仍然需要着重于对非刚性运动进行分割的新颖算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号