首页> 外文期刊>Pattern recognition letters >Subspace clustering via stacked independent subspace analysis networks with sparse prior information
【24h】

Subspace clustering via stacked independent subspace analysis networks with sparse prior information

机译:通过堆叠独立子空间分析网络具有稀疏事先信息的子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Sparse subspace clustering (SSC) method has gained considerable attention in recent decades owing to its advantages in the fields of clustering. In essence, SSC is to learn a sparse affinity matrix followed by striving for a low-dimensional representation of data. However, the SSC and its variants mainly focus on building high-quality affinity matrix while ignoring the importance of low-dimensional feature derived from the affinity matrix. Moreover, due to their intrinsic linearity of models, they cannot efficiently handle data with the nonlinear distribution. In this paper, we propose a stacked independent subspace analysis (ISA) with sparse prior information called stacked-ISASP to deal with these two issues. Powered by handling data with nonlinear structure, our method aims at seeking a low-dimensional feature from the image data. Concretely, the model can stack the modified independent subspace analysis networks by incorporating the prior subspace information from the original data. To validate the efficiency of the proposed method, we compare our proposed stacked-ISASP method with the state-of-the-art methods on real datasets. Experimental results show that our approach can not only learn a better low-dimensional structure from the data but also achieve better performance for the classification task.(c) 2021 Elsevier B.V. All rights reserved.
机译:由于其在聚类领域的优势,近几十年来,稀疏的子空间聚类(SSC)方法在群集领域的优势而受到相当大的关注。实质上,SSC是学习稀疏关联矩阵,然后争取数据的低维表示。然而,SSC及其变体主要集中在建立高质量的亲和矩阵,同时忽略了从亲和矩阵导出的低维特征的重要性。此外,由于其模型的内在线性,因此不能有效地处理具有非线性分布的数据。在本文中,我们提出了一个堆叠的独立子空间分析(ISA),稀疏的先前信息称为堆叠 - isa,以处理这两个问题。通过处理具有非线性结构的数据,我们的方法旨在从图像数据寻求低维特征。具体地,模型可以通过从原始数据中包含先前的子空间信息来堆叠修改的独立子空间分析网络。为了验证所提出的方法的效率,我们将我们提出的堆叠isasp方法与真实数据集上的最先进的方法进行比较。实验结果表明,我们的方法不仅可以从数据中学习更好的低维结构,而且还可以为分类任务实现更好的性能。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2021年第6期|165-171|共7页
  • 作者单位

    Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China|Guangdong Discrete Mfg Knowledge Automat Engn Tec Guangzhou 510006 Peoples R China|Guangdong HongKong Macao Joint Lab Smart Discrete Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China|Guangdong Discrete Mfg Knowledge Automat Engn Tec Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China|Guangdong Discrete Mfg Knowledge Automat Engn Tec Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China|Guangdong Discrete Mfg Knowledge Automat Engn Tec Guangzhou 510006 Peoples R China|Guangdong HongKong Macao Joint Lab Smart Discrete Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China|Guangdong Discrete Mfg Knowledge Automat Engn Tec Guangzhou 510006 Peoples R China|Guangdong HongKong Macao Joint Lab Smart Discrete Guangzhou 510006 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subspace clustering; Independent subspace analysis; Low-dimensional representation; Feature selection;

    机译:子空间聚类;独立子空间分析;低维表示;特征选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号