首页> 外文期刊>Computer vision and image understanding >Improving scene attribute recognition using web-scale object detectors
【24h】

Improving scene attribute recognition using web-scale object detectors

机译:使用Web级对象检测器改善场景属性识别

获取原文
获取原文并翻译 | 示例

摘要

Semantic attributes enable a richer description of scenes than basic category labels. While traditionally scenes have been analyzed using global image features such as Gist, recent studies suggest that humans often describe scenes in ways that are naturally characterized by local image evidence. For example, humans often describe scenes by their functions or affordances, which are largely suggested by the objects in the scene. In this paper, we leverage a large collection of modern object detectors trained at the web scale to derive effective high-level features for scene attribute recognition. We conduct experiments using two modern object detection frameworks: a semi-supervised learner that continuously learns object models from web images, and a state-of-the-art deep network. The detector response features improve the state of the art on the standard scene attribute benchmark by 5% average precision, and also capture intuitive object-scene relationships, such as the positive correlation of castles with "vacationing/touring" scenes.
机译:语义属性比基本类别标签对场景的描述更为丰富。传统上,场景是使用Gist等全局图像特征进行分析的,但最近的研究表明,人们通常以本地图像证据为特征来描述场景。例如,人类经常通过其功能或能力来描述场景,这在很大程度上由场景中的对象所暗示。在本文中,我们利用了在网络规模下训练的大量现代对象检测器,以得出用于场景属性识别的有效高级功能。我们使用两个现代的对象检测框架进行实验:一个半监督学习器,可从Web图像连续学习对象模型,以及一个先进的深度网络。检测器的响应功能将标准场景属性基准上的最新状态平均精度提高了5%,并且还捕获了直观的对象与场景的关系,例如城堡与“休闲/游览”场景的正相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号