首页> 外文期刊>Computer vision and image understanding >Kernel regression in mixed feature spaces for spatio-temporal saliency detection
【24h】

Kernel regression in mixed feature spaces for spatio-temporal saliency detection

机译:混合特征空间中的核回归用于时空显着性检测

获取原文
获取原文并翻译 | 示例

摘要

Spatio-temporal saliency detection has attracted lots of research interests due to its competitive performance on wide multimedia applications. For spatio-temporal saliency detection, existing bottom-up algorithms often over-simplify the fusion strategy, which results in the inferior performance than the human vision system. In this paper, a novel bottom-up spatio-temporal saliency model is proposed to improve the accuracy of attentional region estimation in videos through fully exploiting the merit of fusion. In order to represent the space constructed by several types of features such as location, appearance and temporal cues extracted from video, kernel regression in mixed feature spaces (KR-MFS) including three approximation entity-models is proposed. Using KR-MFS, a hybrid fusion strategy which considers the combination of spatial and temporal saliency of each individual unit and incorporates the impacts from the neighboring units is presented and embedded into the spatio-temporal saliency model. The proposed model has been evaluated on the publicly available dataset. Experimental results show that the proposed spatio-temporal saliency model can achieve better performance than the state-of-the-art approaches.
机译:时空显着性检测由于其在广泛的多媒体应用中的竞争性能而吸引了许多研究兴趣。对于时空显着性检测,现有的自下而上算法通常会过分简化融合策略,这会导致性能低于人类视觉系统。本文提出了一种新颖的自下而上的时空显着性模型,以通过充分利用融合的优点来提高视频中注意力区域估计的准确性。为了表示由从视频中提取的位置,外观和时间线索等几种特征构成的空间,提出了包括三个近似实体模型的混合特征空间(KR-MFS)中的核回归。使用KR-MFS,提出了一种混合融合策略,该策略考虑了每个单个单元的时空显着性并结合了相邻单元的影响,并将其嵌入到时空显着性模型中。在公开可用的数据集上对提出的模型进行了评估。实验结果表明,所提出的时空显着性模型可以实现比最新方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号