首页> 外文期刊>Computer vision and image understanding >Detecting conversational groups in images and sequences: A robust game-theoretic approach
【24h】

Detecting conversational groups in images and sequences: A robust game-theoretic approach

机译:检测图像和序列中的会话组:一种可靠的博弈论方法

获取原文
获取原文并翻译 | 示例

摘要

Detecting groups is becoming of relevant interest as an important step for scene (and especially activity) understanding. Differently from what is commonly assumed in the computer vision community, different types of groups do exist, and among these, standing conversational groups (a.k.a. F-formations) play an important role. An F-formation is a common type of people aggregation occurring when two or more persons sustain a social interaction, such as a chat at a cocktail party. Indeed, detecting and subsequently classifying such an interaction in images or videos is of considerable importance in many applicative contexts, like surveillance, social signal processing, social robotics or activity classification, to name a few. This paper presents a principled method to approach to this problem grounded upon the socio-psychological concept of an F-formation. More specifically, a game-theoretic framework is proposed, aimed at modeling the spatial structure characterizing F-formations. In other words, since F-formations are subject to geometrical configurations on how humans have to be mutually located and oriented, the proposed solution is able to account for these constraints while also statistically modeling the uncertainty associated with the position and orientation of the engaged persons. Moreover, taking advantage of video data, it is also able to integrate temporal information over multiple frames utilizing the recent notions from multi-payoff evolutionary game theory. The experiments have been performed on several benchmark datasets, consistently showing the superiority of the proposed approach over the state of the art, and its robustness under severe noise conditions.
机译:作为对场景(尤其是活动)理解的重要步骤,检测组变得越来越重要。与计算机视觉社区中通常假定的情况不同,确实存在不同类型的小组,在这些小组中,站立的对话小组(又称F组)起着重要的作用。当两个或两个以上的人维持社交互动(例如在鸡尾酒会上聊天)时,F形成是人们聚集的一种常见类型。实际上,在许多应用环境中,例如监视,社交信号处理,社交机器人或活动分类等,检测并随后对图像或视频中的此类交互进行分类非常重要。本文提出了一种基于F形成的社会心理学概念来解决该问题的有原则的方法。更具体地说,提出了一种博弈论框架,旨在对表征F形态的空间结构进行建模。换句话说,由于F形式受人类必须如何相互定位和定向的几何构型的影响,因此所提出的解决方案能够解决这些限制,同时还可以对与参与人员的位置和方向相关的不确定性进行统计建模。此外,利用视频数据,它还能够利用来自多收益进化博弈论的最新概念在多个帧上整合时间信息。实验已在几个基准数据集上进行,始终显示出所提出方法相对于现有技术的优越性,以及在严重噪声条件下的鲁棒性。

著录项

  • 来源
    《Computer vision and image understanding》 |2016年第2期|11-24|共14页
  • 作者单位

    Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy;

    Deptartment of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Italy;

    Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy ,Deptartment of Computer Science, University of Verona, Italy;

    Faculty of Electrical Engineering, Mathematics and Computer Science, Technical University of Delft, Netherlands;

    Deptartment of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Italy;

    Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy ,Deptartment of Computer Science, University of Verona, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Group detection; F-formation detection; Conversational groups; Game-theory; Scene understanding;

    机译:组检测;F形成检测;对话小组;博弈论场景理解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号