首页> 外文期刊>Computer vision and image understanding >Absolute pose estimation from line correspondences using direct linear transformation
【24h】

Absolute pose estimation from line correspondences using direct linear transformation

机译:使用直接线性变换从直线对应估计绝对姿态

获取原文
获取原文并翻译 | 示例

摘要

This work is concerned with camera pose estimation from correspondences of 3D/2D lines, i. e. with the Perspective-n-Line (PnL) problem. We focus on large line sets, which can be efficiently solved by methods using linear formulation of PnL. We propose a novel method "DLT-Combined-Lines" based on the Direct Linear Transformation (DLT) algorithm, which benefits from a new combination of two existing DLT methods for pose estimation. The method represents 2D structure by lines, and 3D structure by both points and lines. The redundant 3D information reduces the minimum required line correspondences to 5. A cornerstone of the method is a combined projection matrix estimated by the DLT algorithm. It contains multiple estimates of camera rotation and translation, which can be recovered after enforcing constraints of the matrix. Multiplicity of the estimates is exploited to improve the accuracy of the proposed method. For large line sets (10 and more), the method is comparable to the state-of-the-art in accuracy of orientation estimation. It achieves state-of-the-art accuracy in estimation of camera position and it yields the smallest reprojection error under strong image noise. The method achieves top-3 results on real world data. The proposed method is also highly computationally effective, estimating the pose of 1000 lines in 12 ms on a desktop computer.
机译:这项工作涉及根据3D / 2D线(即, e。透视n线(PnL)问题。我们专注于大型线组,可以通过使用线性公式化PnL的方法有效地解决这些问题。我们提出了一种基于直接线性变换(DLT)算法的新颖方法“ DLT组合线”,该方法得益于两种现有DLT方法的新组合,用于姿态估计。该方法用线表示2D结构,并用点和线表示3D结构。冗余3D信息将所需的最小行对应关系减少为5。该方法的基石是DLT算法估算的组合投影矩阵。它包含摄像机旋转和平移的多个估计,可以在执行矩阵约束后恢复这些估计。利用估计的多样性来提高所提出方法的准确性。对于较大的线组(10个或更多),该方法在方向估计的准确性方面可与最新技术相媲美。它在估计摄像机位置时达到了最新的精度,并且在强图像噪声下产生最小的重投影误差。该方法在现实世界的数据上获得前三名的结果。所提出的方法在计算上也非常有效,它可以估计台式计算机在12毫秒内1000条线的姿势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号