首页> 外文期刊>Computer vision and image understanding >Model-based motion blur estimation for the improvement of motion tracking
【24h】

Model-based motion blur estimation for the improvement of motion tracking

机译:基于模型的运动模糊估计,可改善运动跟踪

获取原文
获取原文并翻译 | 示例

摘要

Video tracking is an important task in many automated or semi-automated applications, like cinematic post production, surveillance or traffic monitoring. Most established video tracking methods fail or lead to an inaccurate estimate when motion blur occurs in the video, as they assume, that the object appears constantly sharp in the video. In this paper, we present a novel motion tracking method with explicit modeling of motion blur, estimating the continuous motion of a rigid 3-D object with known geometry in a monocular video as well as the sharp object texture. Instead of treating motion blur as a potential source of errors, we take advantage of it and consider motion blur as an additional information source, providing information about the motion of the tracked object during the exposure. In an analysis-by-synthesis approach we explicitly model the effects of motion blur reconstructing the captured frames, in order to accomplish a more accurate estimation. We design our algorithm to be capable to run in parallel on the GPU using the common rendering pipeline and considering each frame individually to handle also long videos. We tested our approach on both synthetic and real videos. In both cases, we achieve significant improvements of accuracy and reductions of frame reconstruction error compared to the estimated motion of a rigid body tracker, without motion blur handling.
机译:在许多自动化或半自动化应用中,例如电影后期制作,监视或交通监控,视频跟踪是一项重要任务。正如他们所假定的那样,大多数已建立的视频跟踪方法会在视频中出现运动模糊时失败或导致估计不准确,因为他们认为对象在视频中看起来一直很清晰。在本文中,我们提出了一种新颖的运动跟踪方法,该方法具有运动模糊的显式建模,可以估计单眼视频中具有已知几何形状的刚性3-D对象以及清晰的对象纹理的连续运动。我们没有利用运动模糊作为潜在的错误源,而是利用它,将运动模糊作为附加的信息源,在曝光期间提供有关被跟踪对象运动的信息。在综合分析方法中,我们显式地对运动模糊重建捕获帧的效果进行建模,以实现更准确的估计。我们将算法设计为能够使用通用渲染管道并在GPU上并行运行,并单独考虑每个帧以处理长视频。我们在合成视频和真实视频上都测试了我们的方法。在两种情况下,与没有运动模糊处理的刚体跟踪器的估计运动相比,我们都实现了准确性的显着提高,并减少了帧重构错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号