首页> 外文期刊>Computer vision and image understanding >Online multi-object tracking via robust collaborative model and sample selection
【24h】

Online multi-object tracking via robust collaborative model and sample selection

机译:通过强大的协作模型和样本选择进行在线多对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

The past decade has witnessed significant progress in object detection and tracking in videos. In this paper, we present a collaborative model between a pre-trained object detector and a number of singleobject online trackers within the particle filtering framework. For each frame, we construct an association between detections and trackers, and treat each detected image region as a key sample, for online update, if it is associated to a tracker. We present a motion model that incorporates the associated detections with object dynamics. Furthermore, we propose an effective sample selection scheme to update the appearance model of each tracker. We use discriminative and generative appearance models for the likelihood function and data association, respectively. Experimental results show that the proposed scheme generally outperforms state-of-the-art methods.
机译:在过去的十年中,视频中的目标检测和跟踪取得了长足的进步。在本文中,我们提出了一个预训练目标检测器与粒子过滤框架内的多个单目标在线跟踪器之间的协作模型。对于每帧,我们构建检测器和跟踪器之间的关联,并将每个检测到的图像区域视为关键样本,以便在线更新(如果它与跟踪器相关联)。我们提出了一个运动模型,该模型结合了相关的检测与物体动力学。此外,我们提出了一种有效的样本选择方案来更新每个跟踪器的外观模型。我们分别对似然函数和数据关联使用判别和生成外观模型。实验结果表明,所提出的方案通常优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号