机译:通过强大的协作模型和样本选择进行在线多对象跟踪
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3C 1M8, Canada;
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3C 1M8, Canada;
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3C 1M8, Canada;
Department of Computer Science and Engineering, Hanyang University, Seoul 113-791, Republic of Korea;
School of Engineering, University of California, Merced, CA 95344 USA;
Multi-object tracking; Particle filter; Collaborative model; Sample selection; Sparse representation;
机译:从样品选择到模型更新:可靠的在线视觉跟踪算法,可防止漂移
机译:用于稳健的在线多对象跟踪的混合数据关联框架
机译:通过具有显着性检测的自适应样本选择进行可靠的在线跟踪
机译:基于小波置信度和在线判别外观学习的鲁棒在线多目标跟踪
机译:用于强大的视觉跟踪的在线自适应外观模型
机译:在线模型更新和基于动态学习率的鲁棒对象跟踪
机译:通过具有显着性检测的自适应样本选择进行可靠的在线跟踪