首页> 外文期刊>Computer vision and image understanding >Blind image deblurring using elastic-net based rank prior
【24h】

Blind image deblurring using elastic-net based rank prior

机译:使用基于弹性网的秩先验进行盲图像去模糊

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new image prior for blind image deblurring. The proposed prior exploits similar patches of an image and it is based on an elastic-net regularization of singular values. We quantitatively verify that it favors clear images over blurred images. This property is able to facilitate the kernel estimation in the conventional maximum a posterior (MAP) framework. Based on this prior, we develop an efficient optimization method to solve the proposed model. The proposed method does not require any complex filtering strategies to select salient edges which are critical to the state-of-the-art deblurring algorithms. We also extend the prior to deal with non-uniform image deblurring problem. Quantitative and qualitative experimental evaluations demonstrate that the proposed algorithm performs favorably against the state-of-the-art deblurring methods.
机译:在本文中,我们提出了一种用于盲图像去模糊的新图像。所提出的现有技术利用图像的类似补丁,并且其基于奇异值的弹性网正则化。我们定量验证了它偏爱清晰图像而不是模糊图像。此属性能够促进传统的最大后验(MAP)框架中的核估计。基于此先验,我们开发了一种有效的优化方法来求解所提出的模型。所提出的方法不需要任何复杂的滤波策略来选择对于最新的去模糊算法至关重要的显着边缘。我们还将扩展先验以处理非均匀图像去模糊问题。定量和定性的实验评估表明,所提出的算法与最新的去模糊方法相比具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号