首页> 外文期刊>Computer vision and image understanding >Structured deep hashing with convolutional neural networks for fast person re-identification
【24h】

Structured deep hashing with convolutional neural networks for fast person re-identification

机译:带卷积神经网络的结构化深哈希算法,用于快速重新识别人

获取原文
获取原文并翻译 | 示例

摘要

Given a pedestrian image as a query, the purpose of person re-identification is to identify the correct match from a large collection of gallery images depicting the same person captured by disjoint camera views. The critical challenge is how to construct a robust yet discriminative feature representation to capture the compounded variations in pedestrian appearance. To this end, deep learning methods have been proposed to extract hierarchical features against extreme variability of appearance. However, existing methods in this category generally neglect the efficiency in the matching stage whereas the searching speed of a re-identification system is crucial in real-world applications. In this paper, we present a novel deep hashing framework with Convolutional Neural Networks (CNNs) for fast person re-identification. Technically, we simultaneously learn both CNN features and hash functions to get robust yet discriminative features and similarity-preserving hash codes. Thereby, person re-identification can be resolved by efficiently computing and ranking the Hamming distances between images. A structured loss function defined over positive pairs and hard negatives is proposed to formulate a novel optimization problem so that fast convergence and more stable optimized solution can be attained. Extensive experiments on two benchmarks CUHK03 (Li et al., 2014) and Market-1501 (Zheng et al., 2015) show that the proposed deep architecture is efficacy over state-of-the-arts.
机译:给定一个行人图像作为查询,人员重新识别的目的是从大量画廊图像中识别正确的匹配项,这些画廊图像描绘了由不相交的相机视图捕获的同一个人。关键的挑战是如何构建鲁棒而有区别的特征表示,以捕获行人外观的复合变化。为此,已经提出了深度学习方法来提取针对外观的极端变化的分层特征。但是,该类别中的现有方法通常忽略了匹配阶段的效率,而重新识别系统的搜索速度在实际应用中至关重要。在本文中,我们提出了一种具有卷积神经网络(CNN)的新颖的深度哈希框架,用于快速的人员重新识别。从技术上讲,我们同时学习CNN功能和哈希函数,以获得强大而有区别的功能和保留相似性的哈希码。由此,可以通过有效地计算图像之间的汉明距离并对其进行排名来解决人的重新识别。提出了一种在正对和硬负上定义的结构化损失函数,以提出一个新的优化问题,从而可以实现快速收敛和更稳定的优化解。在两个基准CUHK03(Li et al。,2014)和Market-1501(Zheng et al。,2015)上进行的广泛实验表明,所提出的深度架构具有优于最新技术的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号