首页> 外文期刊>Computer vision and image understanding >Sub-hypergraph matching based on adjacency tensor
【24h】

Sub-hypergraph matching based on adjacency tensor

机译:基于邻接张量的副图像匹配

获取原文
获取原文并翻译 | 示例

摘要

Point correspondence problem is an important problem in pattern recognition and computer vision, which can be solved by graph matching. Recently, high order graph matching methods have attracted much attention due to their robustness to geometric transformations. Since high order graph matching usually suffers from high complexity, we previously proposed an adjacency tensor based algorithm, which effectively reduced the complexity of high order graph matching, especially high storage complexity. However, this method can only be applied to equal sized hypergraphs, and it cannot be directly extended to hypergraphs with outliers which are common in real world tasks. Aiming at this problem, in this paper we propose a third order subgraph matching method by extending our previous method to deal with partial point correspondence problem with outliers. Specifically, first a novel objective function focusing on the outlier problem is proposed, by encoding the attributes in a hypergraph with an adjacency tensor, and representing vertex assignments with a partial permutation matrix. Then the objective function is transformed and relaxed to a tractable matrix form and solved by a gradient based optimization algorithm. Consequently, the proposed algorithm can not only tackle the outlier vertices in the hypergraphs, but also involve the same low computational and storage complexities with our previous algorithm. Both synthetic data and real image comparisons with the state-of-the-art methods validate the effectiveness of the proposed method.
机译:点对应问题是模式识别和计算机视觉中的重要问题,可以通过图形匹配来解决。最近,由于其对几何变换的鲁棒性,高阶图匹配方法引起了很多关注。由于高阶图匹配通常遭受高复杂性,因此我们之前提出了一种基于邻接的抗度算法,其有效地降低了高阶图匹配的复杂性,尤其是高存储器复杂度。但是,此方法只能应用于相等大小的超图,并且不能直接扩展到具有异常世界任务中常见的异常值的超图。针对这个问题,在本文中,我们通过扩展前一个方法来处理与异常值的部分点对应问题来提出三阶子图匹配方法。具体地,提出了专注于在具有邻接张量的超图中的属性,并表示具有部分置换矩阵的顶点分配来提出专注于异常问题的新颖目标函数。然后,目标函数被转换并放松到易矩阵形式并通过梯度基于优化算法解决。因此,所提出的算法不仅可以在超图中解决异常值顶点,而且还涉及与我们之前的算法相同的低计算和存储复杂性。合成数据和真实图像与最先进的方法的比较验证了该方法的有效性。

著录项

  • 来源
    《Computer vision and image understanding》 |2019年第6期|1-10|共10页
  • 作者单位

    School of Information Engineering China University of Geosciences(Beijing) Beijing 100083 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China;

    State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China;

    School of Information Engineering China University of Geosciences(Beijing) Beijing 100083 China Computer Science Department TELECOM SudParis Evry 91011 France;

    State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai 200031 China University of Chinese Academy of Sciences Beijing 100049 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hypergraph matching; Subgraph matching; High order structure; Adjacency tensor;

    机译:超图匹配;子图匹配;高阶结构;邻居张量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号