机译:调查对抗性攻击的重要性及其与基于雷达的人类活动识别系统的解释性关系
Department of Electronics and Information Systems Ghent University Belgium Center for Biotech Data Science Ghent University Global Campus Republic of Korea;
Department of Electronics and Information Systems Ghent University Belgium;
Department of Electronics and Information Systems Ghent University Belgium Department of Mechanical and Aerospace Engineering Princeton University USA;
Department of Information Technology Ghent University-imec Belgium;
Department of Applied Mathematics Computer Science and Statistics Ghent University Belgium Center for Biotech Data Science Ghent University Global Campus Republic of Korea;
Department of Electronics and Information Systems Ghent University Belgium Center for Biotech Data Science Ghent University Global Campus Republic of Korea;
Radar data; Activity recognition; Adversarial examples; Neural network interpretability; Deep convolutional neural networks;
机译:人类活动识别系统中的交叉主题转移学习使用生成对抗网络
机译:对扬声器识别系统的实时,鲁棒和适应性的普遍对抗攻击
机译:深层扬声器识别系统的对抗攻击与防御策略
机译:注意力增强卷积自动编码器,用于基于雷达的人类活动识别
机译:基于机器学习和深度神经网络的基于雷达的人体活动识别算法
机译:DRELAB - 深度加强学习对抗僵尸网络:用于对僵尸网络入侵检测系统进行对抗性攻击的基准数据集
机译:调查对抗性攻击的重要性及其与基于雷达的人类活动识别系统的解释性关系