首页> 外文期刊>Computer vision and image understanding >FIFNET: A convolutional neural network for motion-based multiframe super-resolution using fusion of interpolated frames
【24h】

FIFNET: A convolutional neural network for motion-based multiframe super-resolution using fusion of interpolated frames

机译:FIFNET:使用内插帧的融合的基于运动的多帧超分辨率的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

We present a novel motion-based multiframe image super-resolution (SR) algorithm using a convolutional neural network (CNN) that fuses multiple interpolated input frames to produce an SR output. We refer to the proposed CNN and associated preprocessing as the Fusion of Interpolated Frames Network (FIFNET). We believe this is the first such CNN approach in the literature to perform motion-based multiframe SR by fusing multiple input frames in a single network. We study the FIFNET using translational interframe motion with both fixed and random frame shifts. The input to the network is a sequence of interpolated and aligned frames. One key innovation is that we compute subpixel interframe registration information for each interpolated pixel and feed this into the network as additional input channels. We demonstrate that this subpixel registration information is critical to network performance. We also employ a realistic camera-specific optical transfer function model that accounts for diffraction and detector integration when generating training data. We present a number of experimental results to demonstrate the efficacy of the proposed FIFNET using both simulated and real camera data. The real data come directly from a camera and are not artificially downsampled or degraded. In the quantitative results with simulated data, we show that the FIFNET performs favorably in comparison to the benchmark methods tested.
机译:我们使用卷积神经网络(CNN)介绍了一种新的运动基多帧图像超分辨率(SR)算法,该卷积神经网络(CNN)熔化多个内插输入帧以产生SR输出。我们参考所提出的CNN和相关的预处理作为内插帧网络(FIFNET)的融合。我们认为这是通过在单个网络中融合多个输入帧来执行基于运动的多帧SR的第一种这样的CNN方法。我们使用翻译帧间运动来研究FIFNET,具有固定和随机帧偏移。对网络的输入是一系列内插和对齐帧。一个关键创新是,我们计算每个内插像素的子像素互帧注册信息,并将其作为附加输入通道馈送到网络中。我们证明,该子像素注册信息对网络性能至关重要。我们还采用了一个现实的相机特定的光学传递函数模型,用于在生成培训数据时考虑衍射和探测器集成。我们提出了许多实验结果来展示所提出的FIFNET的功效,使用模拟和真实的相机数据。实际数据直接来自相机,并且不会人为地下采样或降级。在具有模拟数据的定量结果中,我们表明,与测试的基准方法相比,FIFNET能够有利地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号