首页> 外文期刊>Computer vision and image understanding >Probabilistic object detection and shape extraction in remote sensing data
【24h】

Probabilistic object detection and shape extraction in remote sensing data

机译:遥感数据中的概率对象检测和形状提取

获取原文
获取原文并翻译 | 示例

摘要

Remote sensing mainly focuses on information extraction from data acquired by sensors on satellite and aerial platforms. Here, one such area of interest is ground object detection and shape extraction. Recently launched satellites and conventional aerial platforms (such as commercial UAV and professional drones) have sensors leading to more detailed and rich data source for this purpose. From these, data most of the times come in the form of optical images and LiDAR measurements. Resolution of this acquired data has increased significantly such that most ground objects (as buildings, trees, ships, cars, airplanes) can be detected and analyzed in detail. Therefore, computer vision methods have become extremely useful in remote sensing applications such as building detection and shape extraction for urban planning; tree crown measurement for crop yield forecasting; ship detection for monitoring unlawful fishery; car detection for traffic flow monitoring and intelligent transportation; and airplane detection for military and commercial operations. Researchers proposed several methods to automate the mentioned applications since manually handling them is extremely hard and prohibitively time consuming. Unfortunately, the proposed methods focus on one object type most of the times. Therefore, there is no general method to handle all the mentioned applications using computer vision tools. To overcome this problem, we propose a general framework for object detection and shape extraction in remote sensing data. Our method is based on probabilistic representation inspired by our previous work and perceptual organization principles. Due to space limitations, we only focus on buildings, trees, ships, airplanes, and cars as objects of interest in this study. We test the proposed method on several optical images acquired by different satellites and LiDAR data obtained from an aerial platform. For all objects of interest, we provide test results on both object detection and shape extraction steps. We analyze the proposed method based on these tests and discuss its strengths and weaknesses. We also comment on possible future extensions of the proposed method.
机译:遥感主要侧重于卫星和空中平台上传感器获取的数据的信息提取。这里,一个这样的感兴趣区域是地对象检测和形状提取。最近推出的卫星和传统的空中平台(如商业无人机和专业的无人机)有传感器,以实现更详细和丰富的数据源。根据这些,大多数时间都以光学图像和激光雷达测量的形式出现。该收购数据的解决方案显着增加,使得可以详细地检测和分析大多数地面物体(作为建筑物,树木,船舶,汽车,飞机)。因此,计算机视觉方法在遥感应用中非常有用,例如建筑物检测和城市规划的形状提取;作物产量预测的树冠测量;船舶检测监控非法渔业;汽车检测交通流量监测和智能运输;和飞机检测军事和商业运营。研究人员提出了几种自动化提到的应用程序的方法,因为手动处理它们非常艰难,非常耗时。不幸的是,所提出的方法侧重于一个物体类型的大部分时间。因此,没有一般方法可以使用计算机视觉工具处理所有提到的应用程序。为了克服这个问题,我们向遥感数据中的对象检测和形状提取提出了一般框架。我们的方法基于我们以前的工作和感知组织原则的启发的概率表。由于空间限制,我们只关注建筑物,树木,船舶,飞机和汽车作为本研究的兴趣对象。我们在由来自空中平台获得的不同卫星和LIDAR数据获取的几个光学图像上测试所提出的方法。对于所有感兴趣的对象,我们在对象检测和形状提取步骤中提供测试结果。我们根据这些测试分析所提出的方法,并讨论其优势和劣势。我们还评论了所提出的方法的未来未来扩展。

著录项

  • 来源
    《Computer vision and image understanding》 |2020年第6期|28-37|共10页
  • 作者单位

    Nokta Detection Technologies Cekmekoy Istanbul 34794 Turkey;

    Marmara University Faculty of Engineering Department Electrical and Electronics Engineering Istanbul 34722 Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号