首页> 外文期刊>Pattern recognition letters >Interactive geospatial object extraction in high resolution remote sensing images using shape-based global minimization active contour model
【24h】

Interactive geospatial object extraction in high resolution remote sensing images using shape-based global minimization active contour model

机译:基于形状的全局最小化主动轮廓模型在高分辨率遥感影像中的交互式地理空间目标提取

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a novel algorithm to extract geospatial objects with regular shape in remote sensing images, using shape-based global minimization active contour model (SGACM). Specially, we define a new energy function combining both image appearance information and object shape prior, and minimize it with an iterative global minimization method. In the proposed energy, not only image edge and color information are utilized, but also a new shadow region term is introduced to obtain more accurate extraction resu moreover, a new shape energy term in which we use kernel principle component analysis (KPCA) to model shapes is defined in our method, which provides good constraint on the extraction process and makes results more robust with respect to disturbances. In the energy numerical minimization process, Split Bregman method is used to get a global solution which overcomes the drawback of running into local minimum for the traditional level set method. Experiment results demonstrate more robustness and accuracy of our proposed method compared with others without shape constraint.
机译:在这项工作中,我们提出了一种新的算法,该算法使用基于形状的全局最小化主动轮廓模型(SGACM)提取遥感图像中具有规则形状的地理空间对象。特别地,我们定义了一个新的能量函数,该函数结合了图像外观信息和对象形状,并使用迭代全局最小化方法将其最小化。在提出的能量中,不仅利用了图像边缘和颜色信息,而且引入了新的阴影区域项以获取更准确的提取结果。此外,在我们的方法中定义了一个新的形状能量项,其中我们使用核主成分分析(KPCA)来建模形状,这对提取过程提供了良好的约束,并使结果在干扰方面更加稳健。在能量数值最小化过程中,采用斯普利特Bregman方法获得了全局解,克服了传统水平集方法陷入局部极小的缺点。实验结果表明,与没有形状约束的方法相比,该方法具有更高的鲁棒性和准确性。

著录项

  • 来源
    《Pattern recognition letters》 |2013年第10期|1186-1195|共10页
  • 作者单位

    Key Laboratory of Technology in Geo-spatiat Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China;

    Key Laboratory of Technology in Geo-spatiat Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China;

    Key Laboratory of Technology in Geo-spatiat Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China;

    Key Laboratory of Technology in Geo-spatiat Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object extraction; Remote sensing image; Shape prior; Active contour model; Global minimization;

    机译:对象提取;遥感影像;形状先验;活动轮廓模型;全局最小化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号