首页> 外文期刊>Computer vision and image understanding >Generalizing semi-supervised generative adversarial networks to regression using feature contrasting
【24h】

Generalizing semi-supervised generative adversarial networks to regression using feature contrasting

机译:使用特征对比度概括半监督生成的对抗性网络以回归

获取原文
获取原文并翻译 | 示例

摘要

In this work, we generalize semi-supervised generative adversarial networks (GANs) from classification problems to regression problems. In the last few years, the importance of improving the training of neural networks using semi-supervised training has been demonstrated for classification problems. We present a novel loss function, called feature contrasting, resulting in a discriminator which can distinguish between fake and real data based on feature statistics. This method avoids potential biases and limitations of alternative approaches. The generalization of semi-supervised GANs to the regime of regression problems of opens their use to countless applications as well as providing an avenue for a deeper understanding of how GANs function. We first demonstrate the capabilities of semi-supervised regression GANs on a toy dataset which allows for a detailed understanding of how they operate in various circumstances. This toy dataset is used to provide a theoretical basis of the semi-supervised regression GAN. We then apply the semi-supervised regression GANs to a number of real-world computer vision applications: age estimation, driving steering angle prediction, and crowd counting from single images. We perform extensive tests of what accuracy can be achieved with significantly reduced annotated data. Through the combination of the theoretical example and real-world scenarios, we demonstrate how semi-supervised GANs can be generalized to regression problems.
机译:在这项工作中,我们将半监督生成的对抗性网络(GAN)从分类问题概括为回归问题。在过去几年中,已经证明了在分类问题中证明了改善使用半监督培训进行神经网络培训的重要性。我们提出了一种名为特征对比的新型损失函数,导致鉴别者可以基于特征统计来区分虚假和真实数据。该方法避免了潜在的偏差和替代方法的限制。半监督GAN的概括为回归问题的问题,以便为无数申请开放其用途,并为更深入地了解GAN函数的理解提供了途径。我们首先展示了在玩具数据集上半监督回归GAN的能力,允许详细了解他们在各种情况下运作的方式。该玩具数据集用于提供半监督回归GaN的理论基础。然后,我们将半监督回归GAN应用于许多现实世界计算机视觉应用:年龄估计,驾驶转向角预测,以及从单个图像计算的人群计数。我们执行广泛的测试,可以通过显着减少的注释数据来实现的准确性。通过理论示例和真实世界的情景的结合,我们展示了半监督的GAN如何推广到回归问题。

著录项

  • 来源
    《Computer vision and image understanding》 |2019年第9期|1-12|共12页
  • 作者单位

    The City College The City University of New York 160 Convent Ave New York NY 10031 USA The Graduate Center The City University of New York 365 5th Ave New York NY 10016 USA;

    The City College The City University of New York 160 Convent Ave New York NY 10031 USA The Graduate Center The City University of New York 365 5th Ave New York NY 10016 USA;

    Borough of Manhattan Community College The City University of New York 199 Chambers St New York NY 10007 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Generative adversarial learning; Age estimation; Regression;

    机译:生成的对抗性学习;年龄估计;回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号