首页> 外文期刊>Computer vision and image understanding >A two-streamed network for estimating fine-scaled depth maps from single RGB images
【24h】

A two-streamed network for estimating fine-scaled depth maps from single RGB images

机译:用于估计来自单个RGB图像的细微缩放深度映射的两流网络

获取原文
获取原文并翻译 | 示例

摘要

Estimating depth from a single RGB image is an ill-posed and inherently ambiguous problem. State-of-the-art deep learning methods can now estimate accurate 2D depth maps, but when the maps are projected into 3D, they lack local detail and are often highly distorted. We propose a fast-to-train two-streamed CNN that predicts depth and depth gradients, which are then fused together into an accurate and detailed depth map. To overcome the challenge of learning from limited sized datasets, we define a novel set loss over multiple images. By regularizing the estimation between a common set of images, the network is less prone to over-fitting and achieves better accuracy than competing methods. Our method is applicable to both entire scenes and individual objects and we demonstrate this by evaluating on the NYU Depth v2 and ScanNet datasets for indoor scenes and on the ShapeNet dataset for single man-made objects. Experiments shows that our depth predictions are competitive with state-of-the-art and lead to faithful 3D projections rich in detailing and structure.
机译:估计来自单个RGB图像的深度是一种不良和固有的模糊问题。最先进的深度学习方法现在可以估计准确的2D深度映射,但是当地图被投射到3D中时,它们缺乏本地细节,并且通常很高扭曲。我们提出了一种快速致力于列车的两流CNN,其预测深度和深度梯度,然后将其融合在一起以准确且详细的深度图。为了克服从有限的数据集中学习的挑战,我们将在多个图像上定义新颖的集合丢失。通过规范常见图像集之间的估计,网络不容易倾向于过度拟合并且比竞争方法更好地实现更好的准确性。我们的方法适用于整个场景和各个对象,我们通过评估NYU深度V2和Scannet数据集,用于单个人为物体的ShapEnet​​数据集进行评估。实验表明,我们的深度预测与最先进的竞争力,并导致忠实的3D投影在细节和结构中丰富。

著录项

  • 来源
    《Computer vision and image understanding》 |2019年第9期|25-36|共12页
  • 作者单位

    Institute of Computer Science II University of Bonn Endenicher Allee 19a 53115 Bonn Germany College of Advanced Interdisciplinary Studies National University of Defense Technology DeYa Road 109 410073 Changsha China;

    Institute of Computer Science II University of Bonn Endenicher Allee 19a 53115 Bonn Germany;

    Institute of Computer Science II University of Bonn Endenicher Allee 19a 53115 Bonn Germany;

    Institute of Computer Science II University of Bonn Endenicher Allee 19a 53115 Bonn Germany School of Computing National University of Singapore 13 Computing Drive 117417 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Depth estimation; Depth gradient; Set loss; Indoor scenes; Man-made objects;

    机译:深度估计;深度梯度;丢失;室内场景;人造物体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号