首页> 外文期刊>Computer vision and image understanding >Detection and localization of spatially correlated point landmarks in medical images using an automatically learned conditional random field
【24h】

Detection and localization of spatially correlated point landmarks in medical images using an automatically learned conditional random field

机译:使用自动学习的条件随机场检测和定位医学图像中的空间相关点地标

获取原文
获取原文并翻译 | 示例

摘要

The automatic detection and accurate localization of landmarks is a crucial task in medical imaging. It is necessary for tasks like diagnosis, surgical planning, and post-operative assessment. A common approach to localize multiple landmarks is to combine multiple independent localizers for individual landmarks with a spatial regularizer, e.g., a conditional random field (CRF). Its configuration, e.g., the CRF topology and potential functions, often has to be manually specified w.r.t. the application. In this paper, we present a general framework to automatically learn the optimal configuration of a CRF for localizing multiple landmarks. Furthermore, we introduce a novel “missing” label for each landmark (node in the CRF). The key idea is to define a pool of potentials and optimize their CRF weights and the potential values for missing landmarks in a learning framework. Potentials with a low weight are removed, thus optimizing the graph topology. This allows to easily transfer our framework to new applications, and to integrate different localizers. Further advantages of our algorithm are its low test runtime, low amount of training data, and interpretability. We illustrate its feasibility in a detailed evaluation on three medical datasets featuring high degrees of pathologies and outliers.
机译:地标的自动检测和精确定位是医学成像中的关键任务。对于诊断,手术计划和术后评估等任务而言,这是必需的。定位多个地标的一种常用方法是将用于单个地标的多个独立定位器与空间正则化器(例如条件随机场(CRF))组合。通常必须手动指定其配置(例如CRF拓扑和潜在功能)。应用程序。在本文中,我们提出了一个通用框架来自动学习用于定位多个界标的CRF的最佳配置。此外,我们为每个界标(CRF中的节点)引入了一个新颖的“缺失”标签。关键思想是定义一个电位池,并优化其CRF权重和学习框架中缺少界标的电位值。轻量级电位被去除,从而优化了图形拓扑。这样可以轻松地将我们的框架转移到新的应用程序中,并集成不同的本地化程序。我们算法的其他优点是测试时间短,训练数据量少和可解释性。我们在对具有高度病理学和异常值的三个医学数据集进行详细评估时,说明了其可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号