首页> 外文期刊>Computer vision and image understanding >Factorization based structure from motion with object priors
【24h】

Factorization based structure from motion with object priors

机译:来自对象先验运动的基于因子分解的结构

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an efficient framework to include the information of objects position in classical multi-view geometry problems for 3D reconstruction. In particular, we present two main contributions to Structure from Motion (SfM) using factorization methods for the affine camera case. First, we introduce a method based on factorization that extends the classical 3D point cloud reconstruction based on 2D point correspondences to objects using detection correspondences. In this case, objects are approximated as quadrics in 3D (or more specifically as ellipsoids) and therefore projected as conics in 2D onto the image plane. Therefore, instead of having 2D point to point correspondences, we solve a conic to conic correspondence problem in the setting of affine factorization methods. The solution to this problem provides a 3D location/occupancy of the object together with an affine camera calibration. This is shown to be a generalisation of the standard Tomasi and Kanade factorization method with rigid objects. Secondly, we use the estimated object locations/occupancies to robustly estimate the 3D point cloud from 2D point correspondences by constructing a prior that relates 2D points locations and the positions of the object ellipsoids in 3D. This is done by recasting the problem as a probabilistic matrix factorization where the priors are not generic but truly representative of the scene structure as a composition of objects. In particular we show that by using objects to points relations, we achieve compelling results with high rate of missing data and noisy 2D data, a common occurrence when dealing with man-made textureless objects.
机译:本文提出了一个有效的框架,可将经典多视图几何问题中的对象位置信息包括在内,以进行3D重建。特别是,对于仿射相机盒,我们使用因式分解方法对运动结构(SfM)提出了两个主要贡献。首先,我们介绍一种基于因式分解的方法,该方法将基于2D点对应关系的经典3D点云重构扩展到使用检测对应关系的对象。在这种情况下,对象在3D中近似为二次曲面(或更具体地在椭球中),因此,以2D圆锥形投影到图像平面上。因此,在仿射因式分解方法的设置中,我们解决了圆锥到圆锥对应的问题,而不是拥有2D点对点的对应。该问题的解决方案提供了对象的3D位置/占用以及仿射相机校准。这证明是标准的Tomasi和Kanade分解方法对刚性对象的推广。其次,我们使用估计的对象位置/占用率,通过构造与2D点位置和3D对象椭球体位置相关的先验,从2D点对应关系稳健地估计3D点云。这是通过将问题重现为概率矩阵分解来完成的,其中先验条件不是通用的,而是真实地将场景结构表示为对象的组合。尤其是,我们表明,通过使用对象指向关系,可以达到令人信服的结果,其中丢失数据和噪声2D数据的发生率很高,这在处理人造无纹理对象时很常见。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号