首页> 外文期刊>Computer vision and image understanding >Toward analyzing mutual interference on infrared-enabled depth cameras
【24h】

Toward analyzing mutual interference on infrared-enabled depth cameras

机译:致力于分析红外深度相机的相互干扰

获取原文
获取原文并翻译 | 示例

摘要

Camera setups with multiple devices are a key aspect of ambient monitoring applications. These types of setups can result in data corruption when applied to recent RGB-D camera models because of mutual interference of the infrared light emitters employed by such devices. Consequently, the behavior of such interference must be appropriately evaluated to provide data that will allow monitoring systems to handle possible errors introduced into the data captured by depth sensors. However, multi-device setups have been explored in few studies in the current literature, especially in terms of the detailed measurements of the interference’s effect during long-term usage of RGB-D cameras. In this context, a methodology to evaluate the effect of mutual interference on the accuracy and precision of measured depth values is proposedin this article. The results of a series of experiments with different setups based on multiple depth cameras are explored. These setups include three devices that were widely used in studies in the computer vision literature related to depth imaging: theMicrosoft Kinect v2and twoIntel RealSensemodels:R200andD415. The experimental results indicate that theKinect v2yields considerably more stable depth readings than theRealSense R200in single-camera scenarios, even considering the influence of the warm-up time that is characteristic of time-of-flight devices such as theKinect v2. In multi-device setups, theKinect v2displays periodic peaks of mutual interference that increase in intensity depending on the distance between the cameras, with short-range setups yielding higher interference peaks. Further, the addition of more devices can potentially increase the duration of some interference peaks, albeit their intensity is not greatly affected. In long-range setups, the measured interference is small considering the experiments’ length, with the proportion of bad pixels among all captured frames ranging from 3.74% to 3.97% in a setup comprising three depth cameras. In turn, multi-device setups comprising theRealSensemodels are not affected by prejudicial interference peaks. In long-range setups, the instability of theR200leads to its results being less accurate and precise than those of theKinect v2under mutual interference. However, in close range multi-device setups, the high interference peaks observed with theKinect v2render theRealSensemodels a more stable alternative.
机译:具有多个设备的摄像机设置是环境监控应用程序的关键方面。当将这些类型的设置应用于最新的RGB-D相机型号时,由于此类设备采用的红外光发射器的相互干扰,可能会导致数据损坏。因此,必须适当评估此类干扰的行为,以提供允许监视系统处理由深度传感器捕获的数据中引入的可能错误的数据。但是,在目前的文献中,很少有研究探讨多设备设置,特别是在长期使用RGB-D摄像机期间对干扰影响的详细测量方面。在这种情况下,本文提出了一种方法,用于评估相互干扰对所测量深度值的准确性和精确度的影响。探索了基于多个深度相机的不同设置的一系列实验的结果。这些设置包括在深度视觉相关的计算机视觉文献研究中广泛使用的三种设备:Microsoft Kinect v2和两个Intel RealSense模型:R200和D415。实验结果表明,即使考虑到像Kinect v2这样的飞行时间设备所特有的预热时间的影响,在单相机情况下,Kinect v2的深度读数也要比RealSense R200稳定得多。在多设备设置中,Kinect v2显示相互干扰的周期性峰值,强度会根据相机之间的距离而增加,而短距离设置会产生更高的干扰峰值。此外,添加更多设备可能会增加某些干扰峰值的持续时间,尽管其强度不会受到很大影响。在长距离设置中,考虑到实验的长度,所测得的干扰很小,在包括三个深度相机的设置中,所有捕获的帧中不良像素的比例在3.74%至3.97%之间。反过来,组成RealSense模型的多设备设置也不受偏见干扰峰值的影响。在远程设置下,R200的不稳定性会导致其结果在相互干扰的情况下不如Kinect v2的结果准确和精确。但是,在近距离多设备设置中,使用Kinect v2渲染的RealSense模型观察到的高干扰峰是更稳定的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号